Как работает тепловой узел в многоквартирном доме

Что такое элеваторный узел?

Элеваторный или тепловой узел – это приспособление, одновременно выполняющее функции инжекционного насоса. Главное предназначение такой конструкции заключается в повышении давления в отопительных сетях и увеличении прокачки и объема теплового носителя в магистрали.
Элеватор отопления позволяет транспортировать по магистрали теплоноситель с температурой +150°С, что повышает энергоэффективность системы отопления. Если сравнить теплоотдачу определенного объема жидкости с температурой +90°С с таким же объемом жидкости с температурой 150 градусов, то количество транспортируемой тепловой энергии во втором случае будет значительно больше.

Описывая элеваторный узел системы отопления и что это такое, стоит отметить, что такие устройства позволяют быстро перемещать по магистрали теплоноситель с температурой выше точки кипения без преобразования жидкости в пар. Это достигается благодаря тому, что в сети постоянно поддерживается высокое давление.

Схема и принцип работы

Схема элеваторного узла отопления довольно простая. Внешне конструкция напоминает громоздкий тройник из металлических труб, каждая из которых на конце имеет соединительный фланец.

Типовая схема элеваторного узла отопления выглядит следующим образом:

  • Левый патрубок напоминает сопло, которое сужается до необходимого расчетного диаметра.
  • После него следует цилиндр камеры смешивания.
  • Снизу находится патрубок для присоединения обратного трубопровода.
  • С правой стороны есть еще один патрубок. Это специальный диффузор с расширением, направляющий нагретый теплоноситель в отопительную систему.

Рассмотрев устройство элеватора теплового узла, стоит разобраться в его подключении. К левому патрубку подключается подающая магистраль отопительной централизованной сети. К нижнему патрубку подключается трубопровод с обраткой. С двух сторон устанавливаются отсекающие задвижки и сетчатые фильтры грубой очистки.

Важно! Конструкция теплового узла обязательно дополняется датчиками температуры, манометрами и тепловыми счетчиками. Если рассматривать тепловой узел в многоквартирном доме, принцип работы устройства заключается в следующем:

Если рассматривать тепловой узел в многоквартирном доме, принцип работы устройства заключается в следующем:

  • При прохождении теплоносителя через патрубок с соплом его скорость увеличивается за счет повышенного давления жидкости в магистрали. Это позволяет добиться эффекта инжекционного насоса. Благодаря соплу обеспечивается более эффективная циркуляция жидкости в трубопроводах.
  • При попадании воды в смесительную камеру напор уменьшается. При прохождении струи через диффузор в камере смешивания среда разрежается. Благодаря эффекту инжекции жидкость с большим давлением увлекает за собой воду из обратной магистрали.
  • Охлажденные и нагретые потоки перемешиваются в камере элеватора. В итоге при выходе из диффузора теплоноситель имеет температуру в пределах 95 градусов.

Важно! Для эффективной работы элеваторного узла разница давлений в подающей и обратной магистрали должна быть в определенных пределах, чтобы преодолевать гидравлическое сопротивление жидкости

Плюсы и минусы теплового узла

Элеваторный узел системы отопления имеет следующие преимущества:

  • Приемлемая стоимость и простота конструкции делают элеватор востребованным, несмотря на его внушительный «возраст».
  • Это энергонезависимое устройство не нуждается в электроснабжении для работы.
  • Благодаря наличию элеватора отопления сечение магистрального трубопровода можно сделать меньше, что позволяет сэкономить на его устройстве.

Минусы этого приспособления заключаются в невозможности регулировки температуры теплоносителя. Однако этот недостаток можно нивелировать использованием приборов для регулировки диаметра сопла. В таком случае контроль над температурой осуществляется управлением скоростью потока, что сказывается на степени разрежения в смесительной камере.

Распространённые поломки элеваторного узла

Основные неисправности элеватора отопительной системы могут быть вызваны выходом из строя самого прибора из-за засорения или увеличения внутреннего диаметра сопла. Также причиной поломки может быть засорение грязевика. поломка запорной арматуры и сбой настройки регулятора.

Определить поломку элеваторного узла системы отопления можно по перепаду температурного режима до и после прибора. При обнаружении сильного перепада можно констатировать поломку элеватора из-за засорения или увеличения сопла в диаметре. Но вне зависимости от поломки диагностика проводится сертифицированными специалистами. При засорении элеваторного узла выполняется его прочистка.

Если увеличился первоначальный диаметр из-за коррозии, то произойдёт полная разбалансировка всей отопительной системы. При этом радиаторы в помещениях на верхнем этаже не будут получать тепловую энергию в полном объёме, а батареи в нижних квартирах будут сильно перегреваться. Для устранения проблемы выполняется замена сопла на новый аналог с необходимым диаметром.

Выявить засорение грязевиков в элеваторном узле отопления можно благодаря изменению показаний датчиков давления, расположенных непосредственно до и после устройства. Для удаления загрязнений в тепловой системе выполняется их сброс с помощью крана, расположенного в нижней части грязевика. Если такие действия не дают положительных результатов, то выполняется демонтаж и механическая чистка прибора.

Как функционирует элеватор?

Если говорить простыми словами, то элеватор в системе отопления – это водяной насос, не требующий подведения энергии извне. Благодаря этому, да еще простой конструкции и низкой стоимости, элемент нашел свое место практически во всех тепловых пунктах, что строились в советское время. Но для его надежной работы нужны определенные условия, о чем будет сказано ниже.

Чтобы понять устройство элеватора системы отопления, следует изучить схему, представленную выше на рисунке. Агрегат чем-то напоминает обычный тройник и устанавливается на подающем трубопроводе, своим боковым отводом он присоединяется к обратной магистрали. Только через простой тройник вода из сети проходила бы сразу в обратный трубопровод и прямо в систему отопления без снижения температуры, что недопустимо.

Стандартный элеватор состоит из подающей трубы (предкамеры) со встроенным соплом расчетного диаметра и смесительной камеры, куда подводится остывший теплоноситель из обратки. На выходе из узла патрубок расширяется, образуя диффузор. Агрегат действует следующим образом:

  • теплоноситель из сети с высокой температурой направляется в сопло;
  • при прохождении через отверстие малого диаметра скорость потока возрастает, из-за чего за соплом возникает зона разрежения;
  • разрежение вызывает подсасывание воды из обратного трубопровода;
  • потоки смешиваются в камере и выходят в систему отопления через диффузор.

Как происходит описанный процесс, наглядно показывает схема элеваторного узла, где все потоки обозначены разными цветами:

Непременное условие устойчивой работы узла заключается в том, чтобы величина перепада давления между подающей и обратной магистралью сети теплоснабжения было больше, чем гидравлическое сопротивление отопительной системы.

Наряду с явными преимуществами данный смесительный узел обладает одним существенным недостатком. Дело в том, что принцип работы элеватора отопления не позволяет регулировать температуру смеси на выходе. Ведь что для этого нужно? Изменять при необходимости количество перегретого теплоносителя из сети и подсасываемой воды из обратки. Например, чтобы температуру снизить, надо уменьшить расход на подаче и увеличить поступление теплоносителя через перемычку. Этого можно добиться только уменьшением диаметра сопла, что невозможно.

Проблему качественного регулирования помогают решить элеваторы с электроприводом. В них посредством механического привода, вращаемого электродвигателем, увеличивается или уменьшается диаметр сопла. Это реализовано за счет дроссельной иглы конусной формы, входящей в сопло изнутри на определенное расстояние. Ниже изображена схема элеватора отопления с возможностью управления температурой смеси:

1 – сопло; 2 – дроссельная игла; 3 – корпус исполнительного механизма с направляющими; 4 – вал с зубчатым приводом.

Примечание. Вал привода может снабжаться как рукояткой для управления вручную, так и электродвигателем, включаемым дистанционно.

Появившийся относительно недавно регулируемый элеватор отопления позволяет производить модернизацию тепловых пунктов без кардинальной замены оборудования. Учитывая, сколько еще подобных узлов функционирует на просторах СНГ, подобные агрегаты приобретают все большую актуальность.

Принцип работы элеватора

Внешне конструкция напоминает большой тройник из металлических труб с присоединительными фланцами на концах. Как устроен элеватор внутри:

  • левый патрубок (смотри чертеж) представляет собой сужающееся сопло расчетного диаметра;
  • за соплом располагается смесительная камера цилиндрической формы;
  • нижний патрубок служит для присоединения обратной магистрали к смешивающей камере;
  • правый патрубок – это расширяющийся диффузор, направляющий теплоноситель в отопительную сеть многоэтажного дома.


На чертеже патрубок эжектируемого потока условно показан сверху, хотя обычно он располагается снизу

Примечание. В классическом исполнении элеватор не требует подключения к домовой электросети. Обновленный вариант изделия с регулируемым соплом и электроприводом присоединяется к внешнему источнику питания.

Стальной элеваторный узел подключается левым патрубком к подающей магистрали централизованной тепловой сети, нижним – к обратному трубопроводу. С обеих сторон элемента ставятся отсекающие задвижки, плюс сетчатый фильтр – отстойник (иначе – грязевик) на подаче. Традиционная схема теплового пункта с элеватором также включает манометры, термометры (на обеих линиях) и прибор учета потребленной энергии.

Теперь рассмотрим, как работает элеваторная перемычка:

  1. Перегретая вода из сети теплоснабжения проходит через левый патрубок к соплу.
  2. В момент прохождения сквозь узкое сечение сопла под высоким давлением течение потока ускоряется согласно закону Бернулли. Начинает действовать эффект водоструйного насоса, обеспечивающего циркуляцию теплоносителя в системе.
  3. В зоне смесительной камеры напор воды снижается до нормы.
  4. Струя, движущаяся с высокой скоростью в диффузор, создает разрежение в камере смешивания. Возникает эффект эжекции – поток жидкости с более высоким давлением увлекает через перемычку теплоноситель, возвращающийся из отопительной сети.
  5. В камере элеватора отопления происходит перемешивание охлажденной воды с перегретой, на выходе из диффузора получаем теплоноситель нужной температуры (до 95 °С).

Уточнение. Стоит отметить, что элеваторный узел также использует в работе принцип инжекции – смешивание двух струй с одновременной передачей энергии. Напор результирующего потока становится меньше, чем первоначального, но больше подсасываемого из обратки. Более понятно процесс показан на видео:

Главное условие нормальной работы элеватора – достаточный перепад давлений между магистральной подачей и обратной линией. Указанной разницы должно хватить на преодоление гидравлического сопротивления домового отопления и самого инжектора. Обратите внимание: вертикальная перемычка врезается в обратку под углом 45° для лучшего разделения потоков.


На подаче из теплосети давление самое высокое, при выходе из диффузора – среднее, в обратной магистрали — наиболее низкое. То же самое в элеваторе происходит с температурой воды

Элеватор что это такое

Чтобы понять и разобраться, что собой представляет этот элемент, лучше всего спуститься в подвал здания и посмотреть воочию. Но если у вас нет желания покидать ваш дом, то можно ознакомиться с фото и видео файлами в нашей галерее. В подвале среди множества задвижек, клапанов, трубопроводов, манометров и термометров вы обязательно найдете этот узел.

Предлагаем вначале разобраться в принципе работы. К зданию подводится горячий от районной котельной, и отводиться охлажденный.

Для этого требуются:

  • Трубопровод подачи
    – выполняет поставку горячего теплоносителя к потребителю;
  • Трубопровод обратки
    – выполняет работу по отводу охлажденного теплоносителя и возврата его в районную котельную.

На несколько домов, а в некоторых случаях и на каждый, если дома большие, оборудуются тепловые камеры. В них происходит распределение теплоносителя между домами, а также установлена запорная арматура, которая служит для отсечения трубопроводов. Также в камерах могут выполняться дренажные приспособления, которые служат для опустошения труб, например, для ремонтных работ. Далее процесс зависит от температуры теплоносителя.

В нашей стране есть несколько основных режимов работы районных котельных:

  • Подача 150 и обратка 70 градусов Цельсия;
  • Соответственно 130 и 70;
  • 95 и 70.

Выбор режима зависит от широт проживания. Так, например, для Москвы будет достаточно графика 130/70, а для Иркутска понадобится график 150/70. Названия этих режимов имеют числа максимальной нагрузки трубопроводов. Но в зависимости от температуры воздуха за окном, котельная может работать при температурах 70/54.

Делается это для того, чтобы не было перегрева в помещениях и чтобы в них было комфортно находиться. Выполняется эта регулировка на котельной и является представителем центрального типа регулировки. Интересным является тот факт, что в европейских странах выполняется другой тип регулировки – местный. То есть происходит регулировка на самом объекте теплоснабжения.

Тепловые сети и котельные в таком случаях работают по максимальному режиму. Стоит сказать, что наиболее высокая производительность котельных агрегатов достигается именно при максимальных нагрузках. приходит к потребителю и уже по месту регулируется специальными механизмами.

Эти механизмы состоят из:

  • Датчиков температуры наружного воздуха и внутреннего;
  • Сервопривода;
  • Исполнительного механизма с клапаном.

Такие системы оборудуются индивидуальными приборами для учета тепловой энергии, за счет этого достигается большая экономия денежных ресурсов. По сравнению с элеваторами такие системы менее надежны и долговечны.

Так вот, если теплоноситель имеет температуру не более 95 градусов, то главной задачей является качественное физическое распределения тепла по всей системе. Для достижения этих целей применяют коллекторы и балансировочные краны.

Но в том случае, когда температура выше 95 градусов, то её нужно немного уменьшить. Этим и занимаются элеваторы в системе отопления, они подмешивают к подающему трубопроводу охлажденную воду с обратного.

Функции и характеристики

Как мы уже с вами разобрались, элеватор системы отопления занимается охлаждением перегретой воды до заданной величины. Затем эта подготовленная вода поступает в .

Этот элемент выполняет повышение качества работы всей системы здания и при правильном монтаже и подборе выполняет две функции:

  • Смесительную;
  • Циркуляционную.

Преимущества, которыми обладает элеваторная система отопления:

  • Простота конструкции;
  • Высокая эффективность;
  • Не требуется подключение к электрическому току.

Недостатки:

  • Нужен точный и качественный расчет и подбор элеватора отопления;
  • Нет возможностей регулировать температуру на выходе;
  • Нужно соблюдать перепад давления между подачей и обраткой в районе 0,8-2 бар.

В наше время такие элементы получили огромное распространение в хозяйстве тепловых сетей. Это обуславливается их преимуществами, такими как устойчивость к изменению гидравлических и температурных режимов. К тому же они не требуют постоянного присутствия человека.

Конструкция

Элеватор состоит из:

  • Камеры разрежения;
  • Сопла;
  • Струйного элеватора.

Среди теплотехников есть понятие как обвязка узла элеватора. Оно заключается в установке необходимой запорной арматуры, манометров и термометров. Все это в сборе и является узлом.

Достоинства и недостатки

Практичность элеватора отопления обусловлена следующими преимуществами:

  • простота устройства и, как следствие, минимальное обслуживание;
  • долговечность;
  • низкая стоимость;
  • энергонезависимость (функционирует без участия электричества);
  • независимость коэффициента смешения от гидравлического режима во внешней сети;
  • наличие дополнительной функции: узел играет роль циркуляционного насоса.

Характерными «минусами» данной технологии являются:

  • отсутствие возможности регулирования температуры на выходе;
  • необходимость перепада давления между подающей и обратной линиями в пределах 0,8 – 2 атм;
  • сложность и высокая точность расчета диаметра насадки-конуса и размеров камеры смешения.

Как работает элеваторный узел

Прежде чем разбираться с устройством элеваторного узла, отметим, что данный механизм предназначен для соединения конечных потребителей тепла с тепловыми сетями. По конструкции тепловой элеваторный узел представляет собой своего рода насос, который входит в систему отопления наряду с запорными элементами и измерителями давления.

Элеваторный узел отопления выполняет несколько функций. В первую очередь, он перераспределяет давление внутри системы отопления, чтобы вода конечным потребителям в радиаторы поставлялась с заданной температурой. При прохождении по трубопроводам от котельной до квартир, количество теплоносителя в контуре возрастает практически вдвое. Это возможно только, если есть запас воды в отдельном герметичном сосуде.

Как правило, из котельной подается теплоноситель, температура которого достигает 105-150 ℃. Такие высокие показатели недопустимы для бытовых целей с точки зрения безопасности. Максимальная температура воды в контуре согласно нормативным документам не может превышать 95 ℃.

Примечательно, что в СанПин в настоящее время установлен норматив температуры теплоносителя в пределах 60 ℃. Однако с целью экономии ресурсов активно обсуждают предложение снизить этот норматив до 50 ℃. Согласно экспертному заключению разница не будет ощутима для потребителя, а в целях дезинфекции теплоносителя ее каждые сутки нужно будет прогревать до 70 ℃. Тем не менее, данные изменения в СанПин еще не приняты, поскольку нет однозначного мнения насчет рациональности и эффективности такого решения.

Схема элеваторного узла отопления позволяет привести температуру теплоносителя в системе до нормативных показателей.

Этот узел позволяет избежать следующих последствий:

слишком горячие батареи при неосторожном обращении могут привести к ожогам кожных покровов; не все отопительные трубы рассчитаны на длительное воздействие высокой температуры под давлением – такие экстремальные условия могут привести к преждевременному их выходу из строя; если разводка выполнена из металлопластиковых или полипропиленовых труб, она не рассчитана на циркуляцию горячего теплоносителя.

Как устроен тепловой узел?

Вообще, техническое устройство каждого теплового пункта проектируется отдельно в зависимости от конкретных требований заказчика. Существует несколько основных схем исполнения тепловых пунктов. Давайте рассмотрим их по очереди.

Тепловой узел на основе элеватора.

Схема теплового пункта на основе элеваторного узла является наиболее простой и дешевой. Главный ее недостаток — невозможность регулировать температуру теплоносителя в трубах. Это вызывает неудобства у конечного потребителя и большой перерасход тепловой энергии в случае оттепелей во время отопительного сезона. Давайте посмотрим ниже на рисунок и разберемся в том, как работает эта схема:

Кроме того, что указано выше, в составе теплового узла может быть редуктор понижения давления. Он устанавливается на подаче перед элеватором. Элеватор является главной деталью этой схемы, в которой осуществляется подмешивание остывшего теплоносителя из «обратки» к горячему теплоносителю из «подачи». Принцип работы элеватора основан на создании разряжения на его выходе. В результате этого разряжения, давление теплоносителя в элеваторе оказывается меньше, чем давление теплоносителя в «обратке» и происходит смешение.

Тепловой узел на основе теплообменника.

Тепловой пункт, подключенный через специальный теплообменник позволяет разделять теплоноситель из теплотрассы от теплоносителя внутри дома. Разделение теплоносителей позволяет производить его подготовку при помощи специальных присадок и фильтрации. При такой схеме появляются широкие возможности в регулировании давления и температуры теплоносителя внутри дома. Это позволяет снизить затраты на отопление. Для того, чтобы иметь наглядное представление о такой конструкции посмотрите ниже на рисунок.

Подмешивание теплоносителя в таких системах делается при помощи термостатических клапанов. В таких системах отопления в принципе можно применять алюминиевые радиаторы отопления, но долго они прослужат только при хорошем качестве теплоносителя. Если PH теплоносителя будет выходить за рамки одобренные производителем, то срок службы алюминиевых радиаторов может сильно сократиться. Качество теплоносителя вы контролировать не можете, поэтому лучше перестраховаться и установить биметаллические или чугунные радиаторы.

ГВС может быть подключена подобным образом через теплообменник. Это дает такие же преимущества по части регулирования температуры и давления горячей воды. Стоит сказать, что недобросовестные управляющие компании могут обманывать потребителей при помощи занижения температуры горячей воды на пару градусов. Для потребителя это почти не заметно, но в масштабах дома позволяет экономить десятки тысяч рублей в месяц.

Определение значения теплового узла

Элеватором называется энергонезависимое самостоятельное устройство, которое выполняет функции водоструйного насосного оборудования. Тепловой узел понижает давление, температуру теплоносителя, подмешивая охлажденную воду из системы отопления.

Оборудование способно передавать теплоноситель, нагретый до максимально высоких температур, что выгодно с экономической точки зрения. Тонна воды, прогретая до +150 С, обладает тепловой энергией намного большей, чем тонна теплоносителя с температурой всего в +90 С.

Принципы работы и подробная схема теплового узла

Чтобы понять, как работает оборудование, надо разобраться с его устройством. Схема элеваторного узла отопления не отличается сложностью. Устройство представляет собой металлический тройник с соединительными фланцами на концах.

Конструктивные особенности такие:

  • левый патрубок – это сопло, сужаемое к концу до расчетного диаметра;
  • за соплом идет камера подмеса (смесительная) цилиндрической формы;
  • нижний патрубок нужен для присоединения трубопровода обратной циркуляции воды;
  • правый патрубок – это диффузор с расширением, транспортирующий горячий теплоноситель в сеть.

Несмотря на простое устройство элеватора теплового узла, принцип работы агрегата намного сложнее:

  1. Прогретый до высокой температуры теплоноситель перемещается через патрубок в сопло, затем под давлением скорость транспортировки повышается, и вода быстро перетекает через сопло в камеру. Эффект водоструйного насоса поддерживает заданную интенсивность течения теплоносителя в системе.
  2. При прохождении воды через камеру напор уменьшается, и струя проходит через диффузор, обеспечивая разрежение в камере подмеса. Затем под высоким давлением теплоноситель перемещает через перемычку жидкость, возвращенную из магистрали отопления. Давление создается эффектом эжекции за счет разряжения, которое поддерживает поток подаваемого теплоносителя.
  3. В камере подмеса температурный режим потоков уменьшается до +95 С, это оптимальный показатель для транспортировки по системе отопления дома.

Понимая, что такое тепловой узел в многоквартирном доме, принцип работы элеватора и его возможности, важно поддерживать рекомендуемый перепад показателей давления в трубопроводе подачи и обратки. Разница необходима для преодоления гидравлического сопротивления сети в доме и самого прибора

Интегрируется элеваторный узел системы отопления в сеть так:

  • левый патрубок присоединяется к магистрали подачи;
  • нижний – к трубам с обратной транспортировкой;
  • отсекающие задвижки монтируются с обеих сторон, дополняются грязевым фильтром для предупреждения засорения узла.

Вся схема оснащается манометрами, счетчиками учета расхода тепла, термометрами. Для лучшего сопротивления потоков перемычка в трубопровод обратной подачи врезается под углом в 45 градусов.

Достоинства и недостатки тепловых узлов

Энергонезависимый элеватор отопления стоит недорого, не нуждается в подключении к сети питания, безупречно работает с теплоносителем любого вида. Эти свойства обеспечили востребованность оборудования в домах с центральным отоплением, куда подается теплоноситель высокой степени нагрева.

Недостатки применения:

  1. Поддержание перепада напора воды в трубопроводах обратного тока и подачи.
  2. Каждая магистраль требует конкретных расчетов и параметров теплового узла. При малейших изменениях температуры жидкости придется подстраивать отверстия форсунок, устанавливать новое сопло.
  3. Нет возможности плавно регулировать интенсивность и прогрев транспортируемого теплоносителя.

В продаже предлагаются узлы с регулируемым проходным сечением ручным или электрическим приводом шестеренчатой передачи, расположенной в предкамере. Но в этом случае устройство теряет энергонезависимость.

Принципы функционирования элеваторного узла

Вы уже знаете немного про элеваторный узел системы отопления и что это такое. Рассмотрим подробнее, как функционирует это приспособление. Оно содержит 3 фланца, в которые вставляется входная, выходная (обратная) трубы, а также трубопровод, по которому вода идёт непосредственно к потребителю тепла.

Принцип работы элеватора таков: в: сначала нагретая вода из общей магистрали поступает в патрубок рассматриваемого устройства.


Принцип функционирования элеватора Источник 1-teplodom.ru

Так как теплоноситель находится под давлением, он перемещается чуть дальше, проходя сквозь узкое сопло. При этом возникает эффект инжекции или эффект Вентури, то есть в следующей камере (приёмной) создаётся зона разряжения. Так как указанная камера имеет пониженное давление, начинает действовать закон термодинамики и холодная вода из другого патрубка начинает засасываться в эту часть элеваторного узла. Второй патрубок подключён к так называемой трубе обратки.

Это интересно! Закон Вентури говорит о падении давления жидкости при прохождении её через узкую часть трубы. При этом объясняет, почему так происходит, закон Бернулли.

В результате вышеописанных процессов в следующей части приспособления, которая называется смесительной горловиной, горячая и холодная вода перемешиваются, а давление снижается. После этого нормальной температуры жидкость отправляется непосредственно в систему, обогревающую дома в зимний период.


Наглядно о законе Вентури Источник stack.imgur.com

Таким образом, кроме снижения рабочих параметров системы, элеватор выполняет также функцию насоса. Одна из важнейших задач, которые решает элеватор, – создание необходимого и подходящего давления, которое может преодолеть водяное сопротивление тёплой системы дома. Для этого вертикальная перемычка на месте стыка врезается под углом 450. Это способствует лучшему разделению водяных потоков.

Устройство элеватора содержит другие важные и важные для теплоснабжения элементы. Это приспособление также оснащается фильтрами и обвязкой, в которую входят:

  • манометры (для контроля системного давления);
  • фильтры (освобождают от грязи);
  • термометры (для контроля температуры; располагаются сразу в трёх местах системы);
  • задвижки (нужны для доступа внутрь системы, а также для осуществления аварийных и других работ).

Фильтры, используемые в элеваторе, могут быть двух типов: грязеуловительные или сетчато-магнитные. Первые удаляют наиболее крупный мусор из теплоносителя, вторые отвечают за очистку воды, которая поступает в домовые радиаторы отопления и трубы.


Манометры, задвижки и другая обвязка элеватора Источник tildacdn.com

Рассмотрим, для чего нужен элеватор. Это приспособление находит применение в основном в централизованных системах отопления, а именно там, где t поднимается до ста пятидесяти градусов Цельсия, давление составляет 6-10 бар. Это необходимо для того, чтобы:

  • оборудование, работающие с высокими температурами, функционировало исправно и с высоким коэффициентом полезного действия;
  • доставлять достаточно нагретую воду в отдалённые от котельной районы;
  • экономить ресурсы (за счёт того, что вода, нагретая до температуры более 100°С и имеющая повышенное давление, содержит больше тепловой энергии, чем более холодная, например, девяностоградусная).

Смотрите также: Каталог компаний, что специализируются на инженерных системах (отоплении, водоснабжении, канализации и прочих) и сопутствующих работах

Тепловой распределительный пункт здания

Теплотехники рекомендуют применять один из трех температурных режимов работы котелен. Эти режимы вначале были рассчитаны теоретически и прошли многолетнее практическое применение. Они обеспечивают передачу тепла с минимальными потерями на значительные расстояния с максимальной эффективностью.

Тепловые режимы котелен можно обозначить как соотношение температуры подачи к температуре «обратки»:

  1. 150/70 – температура подачи 150 градусов, а температура «обратки» 70 градусов.
  2. 130/70- температура воды 130 градусов, температура «обратки» 70 градусов;
  3. 95/70 – температура воды 95 градусов, температура «обратки» — 70 градусов.

В реальных условиях режим выбирается для каждого конкретного региона, исходя из величины зимней температуры воздуха. Следует отметить, что применять для отопления помещений высокие температуры, особенно 150 и 130 градусов нельзя, чтобы избежать ожогов и серьезных последствий при разгерметизации.

Температура воды превышает точку кипения, и она не кипит в трубопроводах благодаря высокому давлению. Значит нужно снизить температуру и давление и обеспечить необходимый отбор тепла для конкретного здания. Эта задача возложена на элеваторный узел системы отопления – специальное теплотехническое оборудование, расположенное в тепловом распределительном пункте.

Размеры элеваторного узла

Элеваторы изготавливаются в нескольких типоразмерах, соответствующих величине и потребностям системы отопления дома или подъезда многоквартирного дома:


Таблица зависимости номера элеватора от его размера

Подбор элеватора производится по сочетанию различных параметров — температуры, давления в системе, пропускной способности трубопроводов, присоединительным размерам и т.п. Большинство приборов выбирается исходя из диаметра труб, питающих систему отопления. Важно обеспечить соответствие диаметра питающих трубопроводов и размеров патрубков элеватора, чтобы прибор не оказался своеобразной диафрагмой, снижающей пропускную способность и давление в системе. Кроме того, на эффективность работы влияет размер сопла, подлежащий тщательному расчёту. Формулы расчёта имеются в сети, но самостоятельно его производить, не имея опыта и подготовки, не рекомендуется. Проще всего использовать онлайн-калькулятор, который можно отыскать в сети Интернет. Полученный результат целесообразно проверить на другом калькуляторе, чтобы получить более корректный результат.

Принцип и схема работы

Схема и принцип работы

Элеватор способствует охлаждению перегретой воды до температуры, соответствующей норме.

Затем теплоноситель подает ее в отопительную систему жилых помещений. В тот момент, когда горячая вода в элеваторе из подающего теплопровода смешивается с охлажденной из обратного трубопровода, и происходит охлаждение.

Схема размещения элеватора позволяет более детально ознакомиться с его функциональными возможностями. Не сложно понять, что именно эта деталь отопительной системы обеспечивает эффективность ее работы.

Он работает одновременно как 2 устройства:

  • Циркуляционный насос
  • Смеситель

Конструкция элеватора довольно простая, но эффективная. Отличается приемлемой ценой. Для ее работы не нужно подключать электрический ток

Однако имеются и некоторые недостатки, на которые необходимо обращать внимание:

  • Давление в трубопроводах прямой и обратной передачи необходимо поддерживать в пределах 0,8-2 Бар;
  • Выходная температура не поддается регулировке;
  • Каждый элемент элеватора нужно точно рассчитывать.

Можно с уверенностью сказать, что устройства получили широкое применение в коммунальной отопительной системе.

Принципиальная схема элеватора

На эффективность их работы не влияют колебания теплового и гидравлического режима в тепловых сетях. Кроме того, устройства не требуют постоянного наблюдения. Выбрав правильный диаметр сопла, осуществляется вся регулировка.

Основные элементы элеватора

Основные элементы узла

Основными составляющими устройства являются:

  • Струйный элеватор
  • Сопло
  • Камера разрежения

Элеваторный узел отопления состоит из запорной арматуры, контрольных термометров, манометров. Его еще называют «обвязкой элеватора».

Новые технические идеи и изобретения стремительно внедряются в нашу жизнь. Теплофикация не является исключением.

На смену привычным элеваторным узлам приходят устройства, которые осуществляют регулировку теплоносителя в автоматическом режиме.

Их стоимость значительно выше, но, в то же время, эти устройства более экономны и энергомичны. Кроме того, для их работы обязательно требуется электропитание. Иногда необходима его большая мощность. Надежность с одной стороны и технический прогресс — с другой.

Что в итоге окажется важнее, узнаем со временем.

Принцип работы схемы теплового узла

Рассмотрим принципиальную схему элеваторного узла – то есть схему его работы:

  • горячий теплоноситель подается из котельной по магистральному трубопроводу к входу в сопло;
  • перемещаясь по трубам небольшого сечения, вода постепенно набирает скорость;
  • при этом образуется несколько разряженная область;
  • образовавшийся вакуум начинает подсос воды из обратки;
  • однородные турбулентные потоки сквозь диффузор поступают к выходу.

Если в системе отопления применяется схема теплового узла многоквартирного дома, то ее эффективную работу можно обеспечить только при условии, что рабочее давление между подающим и обратным потоками будет больше расчетного гидросопротивления.

Как работает тепловой пункт с элеваторным узлом смешения

Элеваторные узлы смешения устанавливают в тепловых пунктах зданий, которые подключены к тепловой сети работающей в режиме с качественным регулированием на «перегретой» воде.

Качественное регулирование предполагает изменение температуры воды поступающей в систему отопления в зависимости от температуры наружного воздуха, при постоянном расходе воды циркулирующей в ней.

«Перегретой»

вода считается, если она поступает из тепловой сети с температурой, превышающей необходимую для подачи в систему отопления.

Например, тепловая сеть может работать по графику 150/70, 130/70 или 110/70, а система отопления рассчитана на график 95/70. Температурный график 150/70 предполагает, что при расчётной температуре наружного воздуха (для Киева это -22°С) температура на вводе тепловых сетей в дом должна быть равной 150°C, а уйти в тепловую сеть должна с температурой 70°C, при этом в дом рассчитанный на график 95/70 эта вода должна попасть с температурой 95°C.

Элеваторный узел смешивает поток воды из подачи тепловой сети с температурой 150°C и поток воды вышедший из системы отопления с температурой 70°C, — в результате смешения на выходе из элеватора получается поток с температурой 95°C, который подаётся в систему отопления.

Как происходит смешение

В камере смешения элеваторного узла расположен конфузор «сопло / конус» разгоняющий поток перегретой воды. При повышении скорости потока давление в нём понижается (это свойство описано законом Бернулли) на столько, что становится несколько ниже давления в обратном трубопроводе. Разница давлений между камерой смешения и обратным трубопроводом приводит к перетеканию теплоносителя через перемычку «сапог элеватора» из обрата в подачу.

В камере смешения образуется смесь двух потоков с уже требуемой температурой, но давлением ниже давления обратного трубопровода. Смесь поступает в диффузор элеватора, в котором скорость потока понижается, а давление повышается над давлением обратного трубопровода. Повышение давления составляет не более 1,5 м.вод.ст, что и накладывает на элеваторные узлы ограничения в применении для систем отопления с высоким гидравлическим сопротивлением.

1 Дешёвый и простой

2 Не требует обслуживания

3 Не зависит от электрической сети

Недостатки элеваторных узлов смешения

1 Не совместим с автоматическими регуляторами, поэтому нормативно запрещена их совместная установка.

2 Создаёт располагаемый напор на вводе в систему отопления не более 1,5м.вод.ст., что исключает установку элеваторных тепловых пунктов в зданиях системы отопления которых оборудованы радиаторными термостатическими клапанами.

3 Элеваторный узел обладает постоянным коэффициентом смешения, что не позволяет подать в систему отопления теплоноситель необходимой температуры, при недогреве в тепловой сети.

4 Слишком высокая чувствительность к располагаемому напору на вводе тепловой сети. Снижение располагаемого напора относительно расчётного значения ведёт к снижению объёмного расхода воды циркулирующего в системе отопления, что в свою очередь приводит к разбалансировке системы и останове дальних стояков/ветвей.

5 Для работы элеватора разница давлений между подающим и обратным трубопроводом должна превышать 15 м.вод.ст.

Где установлены тепловые пункты с элеваторными узлами?

Практически все системы отопления введённые в эксплуатацию до 2000 года оборудованы тепловыми пунктами с элеваторными узлами.

Где можно применять элеваторные ИТП?

В настоящее время для всех проектируемых и реконструируемых жилых и административных зданий, обязательно применение автоматического регулирования в тепловом пункте. Применение же элеваторных узлов совместно с автоматическими регуляторами запрещено нормативно.

Элеваторные узлы могут устанавливаться лишь на объектах где нет необходимости в автоматическом управлении системой отопления, располагаемый напор (разница давлений между подающим и обратным трубопроводом) на вводе стабилен и превышает 15 м.вод.ст, для работы подключённой системы отопления достаточно перепада давлений между подачей и обратом в 1,5м.вод.ст, а система отопления работает с постоянным расходом и не оборудована автоматическими регуляторами.

Расчет диаметра отверстия дроссельной шайбы


Расчет отверстий дроссельных шайб очень ответственное мероприятие, его выполняют согласно требованиям СП 41.101/95 по проектированию теплопунктов. Расчет не представляет сложности для инженерно-технического персонала теплосетей и выполняется на базе одной формулы. Сложность представляется в правильности получения точных данных для расчетной формулы, которые на практике очень часто не соответствуют проектным значениям, из-за чего расчетный диаметр определяется неправильно, а шайба не способна установить необходимый гидравлический и тепловой режим работы.

Дроссельная шайба в системе отопления очень часто меняется или высверливается большее проходное сечение. Эту работу обычно проводят мастера- наладчики во время наладочных режимных испытаний в магистральных теплосетях. Расчет производится или ручным способом, или с применением онлайн калькуляторов. В основе обоих методов расчета лежит одна и та же формула, и используются одни и те же вводных данных.

Формульный метод

Диаметр отверстия Д, мм, вычисляется по формуле:

Формула расчета шайбы Д=10х ∜Р/ ΔН

Где:

  • Р — определяемый расход греющего теплоносителя при максимальных температурах в подающем/обратном трубопроводе, т/ч;
  • ΔН — напор, который способна погасить диафрагма, м.в.ст.

Согласно требованиям нормативный материалов СНИП по отоплению установлен предельный показатель диаметра отверстия шайбы, который не может быть меньше 3.0 мм. Это вызвано тем, то отверстия, которые ниже установленного предела, могут забиваться мелкими взвешенными веществами, например, кусочками ржавчины, слетевших с внутренней поверхности труб, после чего система отопления в доме работать не будет, а для замены такой шайбы придется дренировать всю воду из сети.

В данной формуле расход воды Р, т/ч принимается из соответствующего раздела проекта теплоснабжения либо по материалам наладочных режимных испытаний магистральных тепловых сетей. Потребитель может взять такие данные из договора на услуги теплоснабжения, поскольку они прописываются в соответствующих разделах такого документа.

ΔН – дросселируемый напор в шайбе измеряемого в м. в. ст. Устанавливается данный показатель, как разница между располагаемым напором либо перепадом давлений между подающим и обратным трубопроводом, установленных по манометрам в абонентском вводе потребителя и гидросопротивлением внутридомовых труб отопления. Гидравлическое сопротивление равно сумме всех потерь напора в рассматриваемой системе. Как правило, оно составляет от 0.6 до 2.0 м. в. ст. Данные гидропотерь можно взять из проекта теплоснабжения в разделе гидравлический расчет тепловых сетей.

Для того чтобы расчет выполнить правильно потребуется учесть рекомендации СНИП:

  1. При включении системы теплоснабжения дома по без элеваторной схеме, располагаемый напор должен приниматься не менее 6.0 м. вод. ст.
  2. При выполнении расчётов дроссельного отверстия шайбы размер расчетных гидропотерь в местной системе отопления берется из расчета 1-2 м. вод. ст.
  3. При необходимости определить диаметр шайбы для установки перед бойлером, размер расчетных гидропотерь в таком водоподогревателе принимается в диапазоне 1.5 – 2.0 м. вод. ст.
  4. Максимальный напор, который должен быть погашен на шайбе не может превышать 40.0 м. вод. ст.
  5. Полученный расчетный диаметр дроссельного отверстия шайбы обязан быть больше, чем диаметр расчетного сопла элеваторного узла.

  6. Гидравлические потери на сопле элеватора принимаются 40 м.в.ст.

Примеры определения перепада давления для расчета дроссельной шайбы:

  1. Внутридомовая сеть, подключена через элеваторный узел, имеет располагаемый напор в конечной точке участка 63.0 м.в. ст. Для определения расчетного перепада 40 м.в.ст резервируется для работы элеваторного узла, 1.м.в.ст на работу местной системы отопления, в результате на шайбу придется: 63 – 40- 1= 22.0 м.в.ст, что больше минимального порога для шайбы – 6.0 м.в.ст.
  2. Внутридомовая сеть, подключена к тепловой камере без элеваторного узла, имеет располагаемый напор в конечной точке участка 31.0 м.в. ст. Для определения расчетного перепада резервируется 2.м.в.ст на работу местной системы отопления, в результате на шайбу придется: 31 – 2= 29.0 м.в.ст, что больше минимального порога для шайбы – 6.0 м.в.ст.

Программный метод


Расчеты дроссельных шайб на систему отопления, особенно если их нужно сделать в большом количестве, лучше выполнять с использованием программы «Гидравлический расчет трубопроводов» в онлайн режиме. Такой расчет выполняется более точно, поскольку учитывает КМС – коэффициент местного сопротивления. Значения присваиваются узлам, установленным в системах водо-теплоснабжения, в которых происходит гидравлическое сопротивление, вызванных деформацией потока жидкой среды. Участок, где протекает процесс деформации, имеет название местного сопротивления.


Существует связь между гидросопротивлением, диаметром и КМС:

Н=КМСх V/2х g

Где:

  • Н – потери напора среды, м.в.ст.;
  • V – скорость перемещения среды, м/сек;
  • g – 9.8 м/сек.

Формула через расчет по КМС


Алгоритм выполнения расчета шайбы с применением программы:

  1. Открываем вкладку программы «дроссельная шайба»;
  2. вносим данные по внутреннему диаметру трубопроводу, Д1 мм;
  3. вносим значение внутреннего диаметра шайбы, Д2 мм;
  4. вносим значение КМС, полученное ранее на вкладке «расчет сопротивлений» ;
  5. нажимают клавишу «получить результат»;
  6. проверяем результат на соответствие допустимым параметрам расчета, нажимаем клавишу «проверить».
  7. Расчет считается допустимым, если при проверке КМС не превышает потерю напора, установленного для местной сети в 2.м.в.ст.


В идеальном случае, можно рассчитать и поставить шайбу на отдельно взятый жилой дом, но, как правило, это не будет качественно работать, поскольку внутриквартальные сети, одновременно подключают десятки и даже сотни абонентов, которые влияют друг на друга. Поэтому расчет и установку шайб имеет смысл проводить только для всех и с учетом технических характеристик каждого абонентского ввода тепловой сети. Такую сложную работу могут выполнять только специализированные организации, имеющие достаточный опыт, соответствующее оборудование и программное обеспечение.

Сбор данных и предварительные расчеты

Выполнение расчета дросселирующих шайб для группы потребителей по вариантам присоединенной тепловой мощности подразумевает сбор более подробной информации о каждом абонентском вводе, чем при обычном гидравлическом расчете. Кроме того должна быть выполнена корректировка по прогнозируемым расчетам на предстоящие 5 лет. Практически трудно найти одинаковые элеваторные узлы у потребителей, а значить каждый из них будет иметь свои гидравлические потери напора. Таким образом, даже при одинаковых теоретических расходах теплоносителя и скорости потока, внутренние расчетные дроссельные диаметры будут отличаться для каждого дома. Поэтому чтобы качественно выполнить расчет потребуется серьезная база данных потребителей тепла.

Этапы сбора информации для расчета дроссельных шайб:

  1. Выполнение обследование магистральных труб тепловой сети в абонентском тепловом узле, с фиксацией характеристик и наличия установленного оборудования.
  2. Определяют фактические сопротивления напора на: элеваторах, задвижках, отводах, грязевиках, воздушниках и регулирующих устройств.
  3. Составляют исполнительной схему абонентского теплового пункта с обозначением диаметров труб, их протяженности и точек расположения арматуры.
  4. Проверяют энергоэффективность объекта и наличие сверхнормативных тепловых потерь через конструкционные элементы.
  5. Выполняют сбор информации о качестве теплоснабжения по отдельным стоякам, с поквартирным уточнением данных по температуре внутреннего воздуха при расчетной зимней температуре наружного воздуха. Составляют схему теплых и холодных квартир.
  6. Выполняют анализ факторов некачественного функционирования системы отопления, выявляют проблематичные стояки в жилом доме.

Расчет ограничительных устройств выполняется на гидравлической модели участка теплосети, откалиброванной в рабочем тепловом режиме. В конечном итоге такого расчета подготавливаются аналитические материалы, которые содержат все нужные сведения о гидравлических параметрах абонентских ввода потребителей и показателях магистральных тепловых сетей от котельной или центрального теплового пункта. На базе этих данных готовится итоговый документ с расчетными конструктивными характеристиками ограничивающих устройств — основных и подпорных диафрагм по видам присоединенной тепловой нагрузки. Также разрабатываются рекомендаций по нормализации работоспособности абонентского ввода.

Этапы выполнения работ

После завершению всех расчетов и разработки рекомендаций по установке ограничительных шайб непосредственно приступают к монтажу дроссельных устройств. На внутридомовых системах отопления ограничительные устройства допускается устанавливать как в отопительный период, так и в теплое время года. Это объясняется тем, что нормально функционирующие внутридомовые тепловые сети можно отключить вводными задвижками на подающем/отбратном трубопроводе от магистральной сети. Установка шайб на внутриквартальных тепловых сетях выполняется только в летний период, до заполнения их теплоносителем. Работоспособность установленных устройств проверяется в начале отопительного периода, во время пусконаладочных работ.

Ключевыми показателями точности расчета ограничительных устройств в системе отопления считаются:

  1. Соответствие фактических расходов теплоносителя проектным значениям во трубопроводах на подаче/обратке, во внутридомовых стояках и в индивидуальных приборах нагрева. Эти данные, возможно, определить, как по показателям счетных устройств, установленных на вводе в дом теплосчетчиков, так и расчетным путем. Расчетный вариант базируется на замерах 3-х показателей термометров: горячей воды на входе/выходе из абонентского узла, в индивидуальных внутридомовых стояках и отопительных приборах, а также температуры окружающего воздуха в квартире.
  2. Признаком корректности настройки тепловой сети является коэффициент сравнительного расхода теплоносителя, который обязан находиться в интервале 0.9 – 1.15, при условии, что расчетный показатель принят за единицу.
  3. Идентичность фактической температуры окружающего воздуха в комнате проектным или санитарным нормам. Усредненные показатели измеренных температур не могут быть ниже расчетных больше чем на 1 С.
  4. После завершения процесса монтажа новых шайб или контроля старых устройств на предмет работоспособности и достаточности по диаметру необходимо проконтролировать уровень температуры окружающего воздуха не менее чем в 30 % помещений.
  5. В случае, если при выполнении вышеуказанных пунктов будет обнаружены квартиры с низкими температурами воздуха или фактический расход теплоносителя не будет соответствовать параметру 0.9 – 1.15, необходимо будет выполнить смену дроссельных диафрагм, а также перенастроить автоматические регуляторы температуры.

Конечные результаты наладочных испытаний заносятся в тепловой паспорт системы отопления дома, завершением работы оформляется актом, к которому прикладываются следующие документы:

  • Расчетные и аналитические материалы.
  • Места установки шайбы и их характеристики.
  • Результаты испытаний работы системы отопления после установленных дроссельных шайб.
  • Анализ установившегося теплового режима после завершения шайбирования внутридомовой системы отопления.
  • Коррекция габаритов шайб в зонах, где не достигнут необходимый температурный режим.
  • Демонтаж ограничительных устройств, которым требуется корректировка.

Что такое элеваторный узел системы отопления

Магистральные сети теплоснабжения работают на трёх основных режимах:

  • 95°/70°
  • 130°/70°
  • 150°/70°

Первое число обозначает температуру теплоносителя в прямом трубопроводе, второе – в обратном. Транспортировка теплоносителя производится на значительные расстояния, поэтому температура устанавливается с расчётом потерь тепловой энергии при движении и с поправками на климатические или погодные условия. Отсюда и три варианта подачи теплоносителя — если постоянно греть воду до максимального значения, увеличится расход топлива, поэтому режимы нагрева меняют в зависимости от внешних условий.

Согласно санитарным нормам и техническим характеристикам бытового теплового оборудования, верхний предел температуры теплоносителя не должен превышать 95°. Если вода нагрета до 130° или 150°, её надо охладить до установленного значения. Причин для этого имеется несколько:

  • Большинство приборов отопления не способны работать с перегретой водой — чугунные радиаторы становятся хрупкими, алюминиевые могут выйти из строя или перестают держать давление системы.
  • Трубопроводы, используемые для подводки теплоносителя в квартирах, также имеют ограничение по температуре, например, для пластиковых труб установлен температурный порог в 90°.
  • Слишком горячие отопительные приборы опасны для людей, в особенности для детей.

Перегретая вода не превращается в пар только потому, что внутри трубопроводов нет такой возможности. Требуется отсутствие давления и наличие свободного пространства, чего в трубе не может быть. Потери температуры при транспортировке несколько меняют тепловой режим теплоносителя, но необходимость его охлаждения до рабочих значений остаётся. Вопрос решается путём подмешивания охлаждённой воды из обратного трубопровода до получения заданной температуры, подходящей для использования в приборах отопления. Смешивание воды происходит в специальных механических устройствах — элеваторах. Они работают в окружении сопутствующих элементов, называемых окружением элеватора, а весь узел смешивания называется элеваторным узлом.

Расчет элеваторного узла

Для проведения расчета элеваторного узла сначала вычисляют диаметр камеры смешивания и подбирают соответствующий номер элеватора. После этого высчитывают диаметр рабочего сопла.

Для расчетов пригодятся следующие формулы:

Расчет сечения инжекционной камеры ведется в сантиметрах. Для определения этого числа нужно знать расход нагретого теплоносителя в сети с учетом гидравлического сопротивления.

Подготовка воды для системы отопления и как ее правильно умягчить

Это значение можно найти, используя приведенную в таблице формулу, где:

  • Q – это объем тепловой энергии, измеряемый в ккал/ч, расходующейся на обогрев всего сооружения;
  • Tсм – температура теплового носителя в выходном патрубке после элеваторного тройника;
  • T2о – температура обратки;
  • h – сопротивление водяного столба жидкости, которое измеряется в метрах (этот показатель учитывается в разводке всего контура, в том числе и в радиаторах).

По отдельной формуле рассчитывается диаметр узкой части сопла. Для этого нужно знать габариты инжекторной камеры в сантиметрах и коэффициент смешивания. По отдельной формуле находится коэффициент инжекции. Для расчета нам понадобится температура теплоносителя на входящем патрубке.

Когда мы будем знать напор на трубопроводе, идущем от магистрали централизованного отопления, можно вычислить диаметр сопла. Для этого необходимые параметры системы переводят в сантиметры.

После проведения расчетов мы получаем необходимые данные, на основании которых можно подобрать подходящую модель элеваторного узла и определить условия для его правильной и бесперебойной работы. Иными словами, мы можем определить необходимую производительность системы, зная объем циркулирующего теплоносителя, который прокачивается через элеватор за единицу времени, а также минимальный напор жидкости. Основными параметрами при выборе подходящей модели прибора является сечение горловины камеры смешивания и сопла элеватора.

Важно! Диаметр сопла округляем в меньшую сторону до сотых долей миллиметра. Но минимальное значение не может быть меньше трех миллиметров, потому что сопло быстро засорится.

Принцип работы элеваторного узла

Принцип работы теплового элеваторного узла и водоструйного элеватора. В предыдущей статье мы с вами выяснили основное назначение теплового элеваторного узла и особенности эксплуатации, водоструйных или как их еще называют инжекционных элеваторов. Вкратце — основное назначение элеватора понижение температуры воды и одновременно увеличение объема прокачиваемой воды во внутренней системе отопления жилого дома.

Теперь разберем, как же все-таки работает водоструйный элеватор и за счет чего он увеличивает прокачку теплоносителя через батареи в квартире.

Теплоноситель поступает в дом с температурой соответствующей температурному графику работы котельной. Температурный график это соотношение между температурой на улице и температурой, которую котельная или ТЭЦ должны подать в теплосеть, и соответственно с небольшими потерями к вашему тепловому пункту (вода, двигаясь по трубам на большие расстояния, немного остывает). Чем холоднее на улице, тем большую температуру выдает котельная.

Например, при температурном графике 130/70:

  • при +8 градусах на улице в подающем трубопроводе отопления должно быть 42 градуса;
  • при 0 градусов 76 градусов;
  • при -22 градуса 115 градусов;

Если кого-то интересуют более подробные цифры, можете скачать температурные графики для различных систем отопления здесь .

Что такое «теплосеть» и «теплоузел»

Сеть отопления дома представляет собой совокупность трубопроводов, которые обеспечивают теплом каждое жилое помещение. Это сложная система, которая состоит из двух теплопроводов: горячего и остывшего.

Тепловой узел – система теплооборудования; место, где труба гвс сливается с системой отопления здания. Тут происходит распределение и учет тепла.

В список выполняемых задач входят:

  • контроль за состоянием источника тепла;
  • контроль состояния трубопроводов воды и тепла;
  • регистрация данных с аппаратов учета.

Типы теплоузлов

В многоэтажных домах используется тепловые пункты двух типов.

Одноконтурный предусматривает прямое подключение к трубам горячего водоснабжения, то есть теплопроводы соединяются при помощи элеватора. В высотных зданиях тепловая сеть довольно разветвленная, но большая часть оборудования располагается в подвальном помещении.

Важно! Схема двухконтурного узла отопления представляет собой систему из двух теплопроводов, контактирующих между собой посредством теплообменника.

Далее более подробно мы рассмотрим принцип работы одноконтурного теплового узла. Из-за своего устройства, а именно наличия элеватора, и низкой стоимости используется чаще всего. Компаниям, которые занимаются установкой теплооборудования и теплоузлов, выгоднее использовать устаревающие и не требующие тщательного внимания элеваторные узлы.

Устройство

Одноконтурный тепловой узел устроен наиболее просто. Как уже говорилось, он состоит из трубы, отходящей от источника тепла и «холодной» трубы, которые соединяются при помощи элеватора. Также на трубах стоят фильтры и измерительные приборы, контролирующие поток, температуру теплоносителя и давление в трубах.

Фильтровочное оборудование устанавливается, так как вся система отопления довольно негативно реагирует на грязь и осадок в теплоносителе. Со временем его необходимо прочищать либо менять.

Важно! Если давление нестабильно, в теплоузел устанавливают прибор его понижающий.

Установка счетчиков имеет некоторые нюансы:

  • помещается на трубу с «обратным» теплом;
  • располагать его необходимо как можно ближе, насколько это реально, к источнику тепла;
  • настройка параметров (необходимый объем тепла за час, сутки).

Принцип функционирования

В этом пункте мы расскажем, какие процессы происходят внутри элеваторного узла отопления.


Согласно схеме горячая вода, поставляемая коммунальными службами, поступает в дом по «горячей» трубе. «Обойдя» все здание, возвращается к узлу уже в остывшем состоянии, и выводится из системы. Но в элеваторе горячая и «холодная» вода смешиваются, не позволяя температуре выйти за пределы допустимого. Бывают ситуации (подходит для местности с низкой температурой) в элеватор встроен механизм для подогрева: если температура воды при смешивании будет ниже допустимой, механизм включается.

Внутридомовая система отопления может отключаться от городской при помощи задвижек. Такие действия проводят при ремонтных работах и для общей профилактики. Для таких случаев на трубах имеются специальные задвижки, предназначенные для выведения воды из системы.

Важно! Все детали узла присоединяются к системе отопления при помощи фланцевых соединений.

Использование одноконтурного узла имеет как преимущества та и недостатки.

Плюсами такого теплоузла являются:

  • простота в использовании;
  • редкость поломок;
  • относительная дешевизна составляющих и их установки;
  • полностью механизирован и не зависит от посторонних источников энергии.

Основные из отрицательных сторон:

  • для каждого теплопровода необходимы персональные расчеты параметров для подбора элеватора;
  • давление в каждой трубе должно отличатся;
  • только ручная регулировка;
  • Кем проводится установка и уход за теплоузлом.

В домах с большим количеством квартир имеется система подачи тепла и горячей воды от города, которая располагается в подвальном помещении. Такая система отопления нуждается в профилактике. Наиболее «слабым звеном» являются фильтры, или грязевики, за которыми необходимо следить и прочищать (в них скапливается вся грязь от теплоносителя).

Этой работой занимаются, или, по крайней мере, должны ее выполнять, слесари от органов ЖКХ, которые обслуживают здание. Так как теплоцентр – сложный и опасный в эксплуатации, ни в коем случае не разрешается вмешательство посторонних людей, а осуществлять диагностику и ремонт допускается только специально обученному персоналу.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]