Принцип работы
Сам принцип работы индукционного нагревателя не такой сложный, как казалось бы. В качестве примера можно рассмотреть нагреватели вихревого типа. Они широко применяются в отопительных котлах, большая часть населения с ними знакома. Из названия понятно, что энергия рождается из магнитного поля, которая передается теплоносителю.
Вода, которая поступает в устройство, нагревается за счет подаваемой энергии, после чего поступает в систему отопления. Для создания давления, используется обыкновенный насос.
Таким образом вода циркулирует внутри системы, защищая ее от перегрева. В это же время теплоноситель постоянно вибрирует, что защищает от появления накипи. Фактически, это вся рабочая схема данного агрегата.
Индукционный водонагреватель своими руками: схема
Прибор представляет собой трансформатор, имеющий две обмотки: первичную и вторичную. Первый контур преобразует электрическую энергию в вихревые токи, тем самым создает индукционное поле направленного действия, что и обеспечивает индукционный нагрев. На вторичном контуре преобразованная энергия передается теплоносителю (в нашем случае – это вода).
Важно учитывать тип материала, из которого изготовлена обмотка. Так, в бытовых моделях чаще всего используется медный провод. Такой материал хорошо подойдет для нагрева воды в котлах.
Кроме трансформатора в устройстве присутствует генератор и насос (необязательно).
Схема простого индукционного водонагревателя. Как видно, прибор имеет довольно простую конструкцию и малое количество элементов.
Узлы и детали теплогенератора
Устройство включает в себя:
- генератор переменного тока, который увеличивает частоту тока;
- индуктор, трансформирующий электроэнергию в магнитную энергию, представляет собой катушку из медной проволоки;
- нагревательный элемент, чаще всего его роль играет металлическая труба.
Благодаря такой конструкции передача энергии осуществляется практически без потерь. КПД достигает 98%.
Принцип работы
Индукционный водонагреватель состоит из генератора, катушки и сердечника, последний нагревается за счет электромагнитной энергии
Прибор преобразует электрическую энергию в электромагнитную. Последняя, в свою очередь, воздействует на сердечник (трубу), который нагревается и передает воде тепловую энергию. Преобразовывает все эти энергии индуктор, состоящий из катушки и сердечника. Генератор используется для повышения частоты тока, так как со стандартной частотой в 50 Гц сложно добиться высокого нагрева.
В заводских моделях частота тока достигает 1 кГц.
Самодельный
Очевидно, что самодельный простейший индукционный нагреватель будет весить мало, однако будет иметь относительно хороший КПД, при компактных размерах.
В качестве сердечника будет использоваться труба с обмоткой. Также понадобится вторая, аналогичная труба. Ее функция будет заключаться в нагревании.
Особенности приборов
Применение такого прибора в домашних условиях позволяет получить максимальную производительность и надежность в эксплуатации. При этом агрегат не нужно сопровождать особой документацией и разрешением для установки, например, как газовый бойлер. Применяя индукционный нагреватель в роли традиционного отопительного котла, в некоторых случаях не потребуется использование насоса. Движение теплоносителя достигается путем процессов конвекции: вода при большом нагревании превращается в пар.
Стоит отметить, что у индукционного водонагревателя есть масса преимуществ, которые выделяют его среди конкурентов.
- Стоимость такого устройство незначительная.
- Есть возможность собрать нагреватель самостоятельно.
- Не издает постороннего шума. Катушка в процессе работы достаточно сильно вибрирует, но она практически не ощутима.
- Из-за постоянной вибрации грязь и накипь не успевает прикрепляться к функциональным элементам, поэтому прибор не нуждается в регулярной чистке.
- В своем составе имеет тепловой генератор, который очень легко делается герметичным. Вода, выступающая теплоносителем, помещена в нагревательный элемент, благодаря чему энергия передается через магнитное поле. Здесь не требуется использование контактов, а соответственно сальников и различных уплотнительных резинок, которые имеют особенность быстро выходить из строя.
- Редко ломается, так как за нагрев воды отвечает простая трубка, в которой просто нечему сломаться или перегореть.
Выбирая индукционный водонагреватель, хозяин получает прибор с минимальным эксплуатационным обслуживанием, так как он состоит из небольшого числа составляющих. А они, в свою очередь, очень редко выходят из строя.
Принцип работы индукционного котла
Но и без недостатков нельзя обойтись. Как и в любом виде техники, они есть.
- Высокое потребление электроэнергии, которое выльется большими счетами за свет;
- Устройство очень сильно нагревается, причем горячим становится все вокруг, поэтому не стоит прикасаться к прибору во время его работы.
- Индукционный водонагреватель имеет сильную теплоотдачу, поэтому необходима установка датчика температуры, чтобы предотвратить перегрев прибора, и, соответственно, взрыв.
Составляющие
Для прибора понадобится:
1. Труба пластиковая; 2. Сетка из нержавеющей стали; 3. Стальная проволока; 4. Медная проволока; 5. Инвертор сварочный.
Схема индукционного нагревателя созданного своими руками будет очень просто, отсюда малый вес и компактность устройства.
За основу берется катушка, которая будет играть роль индуктора. Она располагается в пластиковом корпусе. Внутри самой катушки нужно расположить отрезок стальной трубы, на которой нужно сделать 2 патрубка (входной и выходной). Они будут нужны для циркуляции воды в системе отопления. Катушка, в свою очередь, должна соединяться с электричеством, чтобы прибор функционировал.
Обратите внимание!
- Пушка гаусса своими руками: ТОП-130 фото лучших способов создания своими руками. Особенности конструкции + мастер-класс для начинающих
- Струбцины своими руками — поэтапный мастер-класс для начинающих. Схемы изготовления разных конструкций + 170 фото
Электросамокат своими руками — мастер-класс с пошаговыми инструкциями работы своими руками. Советы и простые схемы для начинающих + лучшие фото-обзоры
В случае, если есть инвертор, можно использовать несколько иной способ подключения. К тому же это повысит частоту тока, и как следствие кпд прибора.
Сам преобразователь, за счет которого возможен другой тип подключения, состоит из 3 составляющих:
1. Схема управления транзисторами; 2. Выпрямитель; 3. Двухтранзисторный инвертор.
Отличительная особенность этого способа состоит во вторичной обмотке проволоки. Она короткозамкнута, при этом располагается в первой обмотке. Фактически, принцип работы можно сравнивать с трансформатором, однако желаемый итог совершенно разный.
В трансформаторе нагревания стараются избежать, в то время как в индукционном нагревателе наоборот. Скачать схему можно бесплатно.
Достать такой инвертор можно из сварочного аппарата, однако схема подключения будет несколько сложнее. Таким образом, можно собрать индукционный нагревать своими руками из сварочного аппарата.
Обратите внимание!
- Кресло-качалка своими руками: ТОП-120 фото лучших вариантов изготовления. Мастер-класс по созданию кресла-качалки в домашних условиях
Коптильня из газового баллона — лучший мастер-класс по изготовлению самодельной коптильни с пошаговыми фото-схемами для начинающих
Компрессор своими руками: ТОП-130 фото-обзоров готовых компрессоров. Пошаговая инструкция + схемы и чертежи
Что представляет собой и как работает индукционный водонагреватель
Принцип действия всех приборов индукционного типа основан на способности вихревых (наведенных) токов нагревать находящиеся в поле излучения предметы. Индукционный проточный водонагреватель еще относится к разряду постоянно усовершенствующегося оборудования, но и уже существующие модели обладают достаточно высокой тепловой мощностью.
Конструктивно водонагреватель такого типа представляет собой металлическую закрытую емкость небольшого диаметра. Основным элементом является высокочастотная индукционная катушка, помещенная внутрь бака. Характеристики наматываемой спирали зависят от требуемой мощности и производительности устройства. Внутри катушки проходит трубопровод небольшого диаметра, через который проходит нагреваемая вода.
Основным электрическим элементом является понижающий трансформатор и инвертор, позволяющий получить из обычного бытового электричества токи высокой частоты. При прохождении такого тока через индукционную катушку происходит нагрев пространства внутри нее, которое может быть заполнено специальным антифризом или даже обычной водой.
Благодаря повышению температуры внутри катушки осуществляется нагрев проходящей по медной трубке воды. Медь используется в силу своей хорошей теплопроводности.
Принцип работы индукционного водонагревателя
Как видите, схема индукционного водонагревателя достаточно проста. Имея навыки работы с электрооборудованием собрать такое устройство можно даже самостоятельно.
Эксперты отмечают целый ряд положительных моментов использования индукционной техники для обеспечения горячего водоснабжения и даже отопления:
- Агрегаты индукционного типа отличаются исключительной долговечностью. Средний срок службы достигает 25-30 лет. При этом не требуется дорогостоящее техническое обслуживание, профилактическая чистка может осуществляться один раз в 10 лет.
- Индукционные водонагреватели могут обладать значительной тепловой мощностью, наряду с этим потребление электроэнергии (по сравнению с традиционным оборудованием на тэнах) снижено на 30-50%.
- Образование накипи на индукционном греющем элементе невозможно в принципе. Переменное магнитное поле препятствует образованию и оседанию труднорастворимых солей на внутренних поверхностях конструкции.
Конечно, водонагреватели такого типа нельзя отнести к разряду дешевой бытовой техники, на сегодняшний день даже небольшие по мощности модификации стоят не менее 30 тысяч рублей. Но постоянное усовершенствование конструкции, увеличение объемов продаж приводит к постепенному снижению цен на такие устройства. Поэтому в ближайшем будущем индукционные водонагреватели могут стать доступными для широких слоев населения.
Применение
На сегодняшний день область применения нагревателей такого типа очень большая. Необходимо учитывать так же тот факт, что существует большое количество модификаций и возможностей модернизации нагревателей.
Промышленная сфера
Применяется для плавки металлов, получения некоторых видов сплавов, которые затем используется в широком перечне работ. За счет создания сплавов осуществляется производство металлической проволоки.
Различные модификации индукционного нагревателя используются для автосервиса, с целью термической обработки запасных автомобильных частей. Фактически с той же целью технология применяется в медицине, термической обработке подвергаются медицинские аппараты, мебель и оборудование.
Плюсы технологии
Используется в широком перечне производств, за счет низкой себестоимости (в зависимости от вида и модификации), и при большом кпд. В основном применяется в сфере изготовления сплавов, где благодаря использованию индукционного нагревателя возможно получение сверхчистых сплавов.
Обратите внимание!
Ветрогенератор своими руками: ТОП-170 фото-обзоров готовых приборов. Подробная инструкция по самостоятельному изготовлению для начинающих
Точечная сварка своими руками — лучший мастер-класс по изготовлению самодельной точечной сварки с пошаговыми фото-схемами работы своими руками
Теннисный стол своими руками: ТОП-150 фото лучших идей изготовления. Мастер-класс по созданию теннисного стола в домашних условиях
Экологически чистая технология, которая никак не загрязняет окружающую среду, и при этом дешевая в производстве.
Возможен фактически в виде любой формы, что позволяет равномерно распределять тепло по всей площади, исключая локальный перегрев.
Фактически, если сравнивать эту технологию с аналогичными, она не имеет минусов. За исключением одного: он заключается в необходимости соединять индуктор и заготовку. Если этого не делать нагрев будет недостаточным в большинстве случаев.
Что такое индукционный нагреватель воды
ИНДУКЦИОННЫЙ КОТЕЛ, ИНДУКЦИОННЫЙ ОБОГРЕВАТЕЛЬ, ИНДУКЦИОННЫЙ НАГРЕВАТЕЛЬ
На результаты этой статьи потратилось почти год, ну и денег ушло не мало, поэтому просьба перед тем как делать выводы от первых строк дочитать до конца — очень многие вещи станут понятны.
Все началось с того, что назрела тема замены отопления дома. Газ это конечно хорошо, но котел у нас довольно старый и менять его не хочется — он с плавной регулировкой поддрежания температуры, а современные — дискретные, т.е. у них нет горения в половину или в 1/4 четверть от максимума, а чем о плавнее регулировка, тем экономней любой обогреватель. Да, экономия не большая, но даже 200-300 рублей экономии я могу потратить уже по своему усмотрению, а не оплачивая газ.
Ну как положено все началось с поисковика. Вбиваю поисковый запрос «Индукционный котел» и начал изучать найденные страницы. И пришлось серьезно задуматься.
На одной из страниц пропагадирующих индукционные котлы была изложена откровенная паранойя, не удержусь и процитирую:
ТЭН нагревается от того, что через его проводник с повышенным сопротивлением протекает ток, поэтому в любом случае он нагревается до заданных 600 — 750* С и теплоноситель на его поверхности всегда кипит. Из-за этого ТЭН быстро обрастает накипью. От этого теплоотдача уменьшается, и ТЭН в конце концов перегорает.
В индукционном котле можно использовать разные теплоносители, даже нефтепродукты, если их не перегревать свыше 70* С.
ЧЁЁЁ. 600-750 градусов?!
Ладно, берем масленный обогреватель, выкидываем термостат и греем до максимума, преддварительно помолясь, чтобы его не разорвало. Разумеется, что лучше один раз увидеть, чем сто раз услышать. Итак СМОТРИМ
Итак, температура спирали 421 градус при температуре радиатора 168 градусов и это с учетом того, что внутри масло, а его теплопроводность хуже воды в 5 раз. Откуда интересно тога берется 600-750 градусов? Так, на всякий случай, температура прлавления алюминия 660 градусов, меди 1100. Впрочем я знаю откуда — у некоторых нихромовых сплавом максимальная рабочая температура 750°С, но вот будет ли она достигнута есть великие сомнения.
ТЭН обрастает накипью? Да еще и фотку притулили?
Мда.
Охо-хоюшки хо-хо. Для тех кто не в курсе — это тэн от стиральной машинки и в свое время я их менял довольно часто, потому как работал в ремонтной мастерской. Итак, это страшное слово НАКИПЬ:
Накипь – это твердые кальциевые отложения, которые плохо растворяются и образуются в результате образования пара или нагрева воды. Кроме известкового налета, при разогреве воды еще образуется углекислый газ. Но его количество имеет значение, только в промышленных масштабах работы с жесткой водой. Так в котельных, при очистке от накипи котлов нужно обязательно проветривать помещения, но и при кипячении воды также нужно обеспечить в помещении хорошую вентиляцию.
Образование накипи в процессе разогрева воды происходит всегда, если вода жесткая. Только вот накипь может быть разной, т.к. жесткость воды может быть не обязательно карбонатной. Понятно, что причина образования накипи карбонатной являются соли кальция и магния. В случае, если образование накипи происходит за счет силиката кальция, то накипь получается сульфатной. Кремнекислые соединения таких веществ, как железо, алюминий или кальций приводят к образованию накипи силикатной. Так, что образование накипи после работы с жесткой водой не означает, что выпала именно карбонатная накипь. Хотя следует уточнить, что карбонатная накипь самая распространенная.
Ха! Из этого не трудно сделать вывод, что накипь поставляется лишь с новой порцией воды, а воду в системе меняют крайне редко и этот самый слой накипи образуется лишь раз и по немногу утолщается с каждой новой порцией воды, а доливают воду в систему тоже не часто. Следовательно до состояния показанного на фото тэн котла дойдет примерно через 20 лет после того как сгниют алюминиевые радиаторы, поскольку накипь оседает не только на теле тэна, но и на тела самого котла, меньше, но все равно оседает.
И кстати сказать избавится от накипи в отоплении вполне возможно — 100 грамм антинакипиа в системе полностью ликвидируют эту проблему — проверено эксплуатацией электрокотла в течении трех отопительных сезонов.
Но возвращаемся к рекламе индукционных котлов:
В ТЭН- котлах можно использовать теплоносителем только воду и к тому же лучше всего дистиллированную.
В обслуживании ТЭН- котлы менее практичные, чем индукционные, потому что переходной контакт между проводником электроснабжения и проводником самого ТЭН- а постоянно перегретый, из-за этого окисляется и ослабляется. Необходимо постоянно следить за тем, чтобы проводник электроснабжения не отгорел в противном случае при отгорании — может быть повреждено резьбовое соединение ТЭН- а и такой рабочий нагревательный элемент приходится менять. этой проблемы в индукционных котлах не существует, потому что связь его нагревательного элемента с электроснабжением осуществляется через электромагнитное поле переменного тока.
Ну да, конечно, конечно. А катушка индуктора к розетке по беспроводной технологии присоединяется? КРУТО! Чаще всего отгорание происходит в точках соединения при больших нагрузках и не прерывной круглосуточной работе, так что как то не убедительно звучат перегретые контакты. Ладно, чё там дальше?
Индукционные котлы можно ставить в любом, даже не в обособленном месте. Они пожаробезопасны и работают бесшумно.
Ага. А тэн скате внутри котла постоянно стукаясь о стенки своей башкой и от этого в помещении вообще находится не возможно?
Индукционные котлы обеспечивают электрическую безопасность человека гораздо высшую, чем ТЭН- котлы, потому что сам ТЭН может перегорать двояко: а) с разгерметизацией корпуса; в этом случае разогретый нихром от попадания на него воды рассыпается — опасности попадания человека под напряжение нет; б) без разгерметизации корпуса; в этом случае разогретый нихром может прилипнуть к корпусу ТЭН- а. Нагревательный элемент продолжает работать, и через воду металлический корпус котла оказывается под напряжением.
Вполне логичный аргумент, если котел монтировать с нарушениями правил безопасности — любой силовой прибор должен быть заземлен. А дурака и батарейкой убить может, ну если с рогатки и в голову.
Индукционную катушку индукционного котла при мощностях 3 КВт и больше на 50 Гц маленькой и компактной сделать пока что не удается. Поэтому ТЭН- котел имеет намного меньшие габариты при той же мощности, чем индукционный котел.
Дак и не удасться ни когда — частота низкая, всего то 50 Гц, а нужна определенная индуктивность, да еще проводом, чтобы сам не грелся при прохождении через него этих самых 3 кВт. Так что индукционный котел всегда будет большиим.
Ну а принципиальные схемы индукционных котлов это вообще нечто. На одном из сайтов предлагалось использовать вот такую схему для индукционного котла:
Реально довольно долго улыбался — при питании 10. 30 вольт они собираются разогревать котел? Да блок питания для этой пукалки будет вырабатывать тепла больше, чем эта игрушка для детей среднего школьного возраста.
Не скрою попался и один довольно любопытный вариант схемы на тиристоре, но работа на звуоквых частотах не привлекла моего внимания.
Одна из рекламных речевок буквально расмешила:
Экономия на потреблении электричества
Потребление 2,5 кВт вместо 4–5 — прекрасный результат. Но его оказалось недостаточно для амбициозных и бережливых домашних мастеров. Но где взять дешёвую электроэнергию для плиты? Оказывается, ответ известен давно.
Этот прибор называется инвертор, и он преобразовывает постоянный ток в переменный. С его помощью можно свести потребление тока для отопления практически к нулю.
Для уменьшения расхода энергии нам понадобится следующее:
Два аккумулятора не менее 190 А•час (лучше 250 А•час). Инвертор на 4 кВт.
Зарядное устройство для аккумуляторов (24 В).
Трубы магистрали должны быть выполнены из немагнитного материала (пластик, алюминий, медь).
Аккумуляторы подключаем параллельно и ставим на постоянную «зарядку». Процесс, который происходит в электроцепи:
В аккумуляторах образуется постоянный ток, который подаётся на инвертор.
Инвертор преобразует постоянный ток в переменный 220 В.
Ток с инвертора подаётся на индукционную печь, которая работает в обычном режиме (расход).
Зарядное устройство постоянно подзаряжает аккумуляторы.
Честно, это цитата из интернета и на кого она расчитана я даже не представляю.
Делать сразу индукционный котел решительности не хватило, поэтому решил попробовать для начала собрать индукционную батарею отопления. Первое, что просилось само в руки — индукционная печка, но на тему ее покупки договоренности с жабой не образовалось, поэтому найдя в интернете схему индукционной плиты из нее была вычленена силовая часть, которая и была собрана.
У этого же продавца сразу заказал IRFPS37N50, будто чуял че то не хорошее. Да и доставка в этом варианте обошлась сравнительно не дорого — два заказа, а оплата доставки одна.
В общем наигравшись в доволь с однотактником я пришел к выводу, что штука то хорошая, но малейшая ошибка при регулировке убивает силовые транзисторы. Поэтому решил пойти другим путем — попробовать собрать двухтактную схему индукционного обогревателя, благо мощные полевики уже были на руках. Не много поразмышляв я решил использовать полумостовой драйвер IR2153, а чтобы он не убился тяжелыми затворами умощнил его эмиттерными повторителями на 1,5 А. В результате получилась следующая схема:
Идея была довольно проста — пленочные конденсаторы большие токи держат не очень хорошо, поэтому их использовать несколько штук, а если их будет несколько штук, то можно будет подобрать емкость таким образом, чтобы получившийся LC контур загнать в резонанс и получить максимальные магнитные поля.
В качестве теплообменника было решено использовать квадратную трубу — площадь теплообмена и снаружи и изнутри, а это естественно только на руку.
Были подозрения, что электроника будет сильно греться, поскольку на однотактном варианте приходилось использовать обдув радиатора. Ну а чтобы поток воздуха за зря не гонялся было решено использовать его в качестве и конвекционного потока — через трубу направить внутрь квадратной трубы теплообменника, тем самым увеличив производительность конструкции.
Закрепить катушки можно и на герметик, в принципе главное, чтобы они довольно крепко держались даже при падении обогревателя. Хотя конечно уронить такую штуку, если только во время транспортировки — тяжелая игрушка получилась, но ее не на себе носить, поэтому о весе вообще размышлений не было. На концы катушек были одеты высокотемпературные кембрики — не термоусадка, с стеклоткань, она значительно дороже термоусадки и выглядить как материал.
Был сделан чертеж, распечатан на бумаге, приклеен скотчем к листу ДСП, по углам были просверлены отверстия, в котрые были вставлены гвоздики. На гвоздики предварительно одеты кусочки термоусадочной трубки и на этом шаблоне были намотаны катушки. После намотки катушки были пролиты эпоксидынм клеем и прогреты феном для лучшей пропитки жгутов из многожильного провода, которым и были намотаны катушки. Использовался провод диаметром 0,35 мм, в жгуте было 28 жил. Делал позже еще катушки и промызывал их герметиком — уж больно они какие жидкие получились, хотя деражались довольно не плохо.
Дальше все это было собрано в один аппарат и отрегулировано. Как выяснилось в отличии от однотактного варианта силовые транзисторы при том же радиаторе в обдуве не нуждались, однако вентилятор все таки был оставлен — с ним гораздо лучше идет теплообмен. Однако обороты были снижены до минимальной слышимости — так и ресур у него будет больше, меньше пыли нагонит внутрь, да и гудением не будет раздражать.
После сборки естественно нужно было сравнить что собственно выгодней — масленик или индукционник. Было проведена целая куча замеров, но каждый раз индукционник по отношению к масленику оказывался в выигрыше, что довоольно сильно бесило зрителей с Ютуба. Да, конечно некоторые замеры были не совсем корректны, но последняя серия практически критик не вызвала, хотя мнения о том, что я не учился в школе и закон сохранения не знаю все равно мелькали. Да я собственно и не покушался на этот закон — речь идет о производительности и не более того.
В общем последние замеры были сведены в таблицу по результатам которой уже сами делайте выводы, что выгодней.
Тут же начали появляться вопросы типа «А не могли бы Вы собрать мне плату управления?» Да мог бы конечно, но вот только есть два ньюнаса:
Это дорого, потому что приходится делать платы вручную, ПОЛНОСТЬЮ вручную, поскольку очереди на сией девайс я не вижу и заказывать платы на заводе с минимальной партией 10 штук мне нет необходимости. А изготовление платы это и утюжка и ручное сверление, и лужение, т.е. довольно много времени, которое я не могу просто взять и подарить — срок жизни знаете ли ограничен и тратить ее на что то, что мне не интересно и не взяв за это деньги просто глупо.
Вероятность довести до ума сию конструкцию у не подготовленного паяльщика не очень велика, поскольку кроме платы требуется еще и индуктор, а это катушки количество витков в которых напрямую зависит от способа их соединения, толщины стали и расстояния между катушкой и сталью.
Результат соревнований индукционного оборгевателя и масленного конечно же впечатлил и идея сборки индукционного котла засела ОЧЕНЬ плотно в голове. Первое, что нужно было решить — какой индутор собрать. Разумеется, что в отличии отечественных индукционных котлов я собирался делать его не на 50 Гц. А для этого уже нужны были более серьезные конденсаторы — уж больно много в интернете фоток разорвавшихся пленочников. Поэтому и были заказны конденсаторы для индукционных плит — уж они то точно выдержат и ток и напряжение. Для подавления импульсных помех по питанию были заказаны конденсаторы и создания резонанса были приобретены конденсаторы серии MKP, которые используются в индукционных плитах. По питанию я брал на 5 мкФ и 3 мкФ, для индуктора на 0,27 мкФ. Там, где покупал я уже вывеска, что товар не доступен, поэтому выбирайте сами КОНДЕНСАТОРЫ MKP.
Еще одним фактором для создание индукционного котла послужило их серийное производство, правда не наше, а более компактоное и высокочастное — Китайские индукционные котлы мощностью 6 кВт и 10 кВт. Правда было понятно из фоток, что Китайцы уперлись в максимальную мощность 3 кВт с одной секции нагревателя, поскольку использовали однотактыне преобразователи — это видно из наличия двух и трех одинаковых плат управления с принудительной вентиляцией. Используя двухтактный мостовой инвертор я расчитывал получить 4-5 кВт с одной секции, а учитывая то, что силовая часть может обслуживать 2 секции индуктора, то проблем с мощность вообще не намечалось.
Почему ограничена мощность индукционного котла? Все довольно банально — для получения резонанса необходима определенная индуктивность. Если резонанс будет на звуковых частотах, то и управление и сам индуктор станет слышно, а это будет ОЧЕНЬ сильно утомлять, мягко говоря. Если уходить на более высокие частоты, то мы будем вынуждены уменьшать количество витков, а сила магнитного поля, необходимого для возникновения токов Фуко, т.е. вихревых токов, кторые и греют сталь, будет уменьшаться. Ведь сила магнитного поля прямо пропорциональна количеству витков и протекающему через них току. Мотать повышающий трансформатор для получения большего напржяжения не улбынулось по двум причинам:
Габариты и стоимость феррита
Проблемность изоляции индуктора, и силовой части управления
Да, да, изоляция тут тоже имеет не последнее значение — при резонансе и мостовом инверторе к катушке индуктора прилагает порядка 800 вольт. Если удвоить частоту, то придется уменьшать количество витков тоже в 2 раза, а для получения той же мощности придется увеличивать в 2 раза прилагаемое напряжение, а это уже 1600 вольт. Не, я не рискнул затевать такое, да и Вам не советую — уж слишком становтся опасной эта штука.
Первый вариант схемы управления дал понять, что кроме повышенной аккуратности нужно схему немного изменить, что и было сделано. Однако кое что на первом варианте я упел проверить:
Вообще не впечатлило. Однако немного поразмышляв я пришел к выводу, что с проверкой я сильно поторопился — магнитное поле вокруг катушки индуктора не было замкнуто, а это приводило к потерям — стальной лист, который находился рядом с котлом ощутимо нагрелся во время проведения опыта.
Ну а поскольку управление индукционным котлом я все таки ушатал, то решено было собрать не убиваемый стенд для проверки индукторов, ну и собственно новое, более продуманное управление для индукционного котла.
Посидев вечерок в итоге получилась вот такая схема проверочного стенда. В принципе из не традиционного здесь только первая ступень ограничения тока — действующее значение формируется не длительностью импульсов, как это обычно принято в контроллере TL494, а изменением частоты преобразования. Такое решение обусловлено прежде всего тем, что отпадает потребность бороться с импульсами самоиндукции, которые и вызывают нагрев силовых транзисторов, а посколько нагрузка имеет реактивное сопротивление, увеличивающееся от используемой частоты, то сомнений в работоспособности данного схемотехничекого решения не было. Кроме этого в схему был введен аналоговый частотомер, позволяющий орентироваться в используемых частотах. Разумеется, что шкала частотомера была проградуирована по показаниям реального частотомера.
Управление котлом тоже притерпело некоторые изменения и финальная принципиальная схема приобрела следующий вид:
Схемы имеют общий принцип управления протекающим через нагрузку током — регулировка частоты. В стенде частота зависит от протекающего через нагрузку тока, для котла же эта зависимость формируется терморегулятором. Причем регулировка имеет две ступени — первое уменьшение потребления происходит при достижении температуры теплоносителя определенной величины и производится ступенчато. Вторая ступень регулировки плавная и изменяет подаваемую на индуктор котла мощность в зависимости от температуры отапливаемого помещения. Таким образом инерционность нагревателя полностью отсутствует.
После неудачного испытания первой версии индукционного котла было опробована экранировка катушек ферритовыми стержнями — прирост производительности был ярко выраженным. Это конечно окрыляло, но не сильно — проект становился слишком дорогостоящим — феррита требовалось много,а он дешевизной не отличается.
Решение проблемы пришло в два этапа. Сначала было решено использовать тороидальный теплообменник с лабиринтом внутри, но немного поразмышляв появился набросок тороидального индукционного котла без лабиринта и с другим расположением входной и выходной труб.
Первое включение показало, что витков на котле намотано слишком мало и пришлось катушку уплотнять и доматывать.
До сборки платы управления индукционным котлом оставалась по сути неделя, но руки чесались — котел то уже был готов и готовность проверочного стенда тоже не давала покоя.
Была собрана и опробована модель отопления с несколькими вариантами электрических котлов, но финальный опыт был сорван — диаметр труб оказался слишком мал и вода в котле с тэном просто закипела:
Модель отопления была переделана — добавлен циркуляционный насос, который исключит закипание воды, а объем воды в модели возрос с полутора ведер до шести с половиной, что позволило значительно увеличить по времени протекание эксперимента. Итак, час ИКС, ну или момент исстины настал:
Скажу честно — расстроился. Ни какого волшебного прироста производительности не произошло. Понятно, что при самоциркуляции вероятность прироста скорей всего была бы — при медленном движении воды на поверхности тэна образовываются пузырьки, которые уносятся сами в расширительный бачок, унося и тепло, но при использовании циркуляционного насоса этот эффект сводится на нет — тэн слишком интенсивно омывается водой и газообразование уменьшается в десятки раз.
Разумеется индукционный котел загонялся и в резонанс, но зависимость протекающего тока линейна — он начинает увеличиваться при повышении частоты и приближении ее к резонансу, а миновав его ток так же линейно уменьшается. Ни каких всплесков протекающего через катушку тока выявлено не было.
Ну а поскольку модель собрана полноценная, то не попробовать побаловаться с электродным котлом я не удержался:
Дя этих опытов так же был куплен новый, современный электросчетчик, который после завершения замеров попросту оказался не нужным. Конечно же и в него был засунут мой любопытный нос:
В общем плату управления котлом собирать до конца я не стал — нет разницы в производительности тепла у индукционного котла и котла на тэнах, следовательно эта плата мне не понадобится. Нет, разбирать ее до конца пока не буду — в наличии есть и TL494 и IR2110, а силовые транзисторы на нее я пока не запаял. Пусть пока поваляется. А вот идеи индукционного нагрева я на вооружение возьму — с подобным комплектом силовых устройств можно не спешно или быстро греть множество стальных вещей для различных целей. Так что был и опыт приобретен и стенд остался для дальнейших опытов.
Конечно же жалко, что идея с индукционным котлом оказалась не состоятельной, но есть технология изготовления индукционных обогревателей, которые по электронике конечно сложнее заводского конвекционного, но используют более точное поддержание температуры, или использование непрерывного регулирования, как в котле можно добиться приличной экономии.
Еще раз напоминаю — речь идет не о КПД, а о производительности и не надо мне махать перед носом учебниками по физике и термодинамике — описанные в учебниках опыты поставлены в идеальных условиях, а жилище ни когда не будет в подобных условиях, у него всегда есть теплообмен с окружающей средой. Рассчитать математически что и как будет происходить у меня ума не хватило, поэтому я и собрал несколько моделей и проверил все ОПЫТНЫМ путем и видел все собственными глазами. Так что уймите свой сарказм и если есть сомнения, то можете все повторить — все принципиальные схемы, все используемые конструкции описаны достаточно подробно.
Индукционный котел, индукционный обогреватель, индукционный нагреватель своими руками
Описание конструкции индукционного котла, индукционного обогревателя с полными описаниями и принципиальными схемами
Источник: soundbarrel.ru
Как сделать своими руками
Рассмотрим второй способ изготовления мощного индукционного нагревателя своими руками. В отличие от первого способа, составляющих будет гораздо меньше, однако его мощность будет выше, за счет использования несколько иных компонентов и типа подключения.
Нам понадобится:
1. Инвертор сварочный; 2. Генерирующий сварочный ток (от 15 А); 3. Медная проволока.
В качестве сердечника рекомендуется использовать полимерные материалы. Это обусловлено тем, что они способны выдерживать довольно высокие температуры при нагревании. В нашем случае будет полимерная труба с диаметром 50 мм.
На сердечник необходимо намотать проволоку, соединить ее с инверторными клеммами таким образом, чтобы не было перекручивания.
Варианты самодельных устройств
На просторах интернета размещено достаточное количество разнообразных конструкций, создаваемых для различных целей. Взять индукционный малогабаритный нагреватель, сделанный из компьютерного блока питания 250—500 Вт. Модель, показанная на фото, пригодится мастеру в гараже или автосервисе для плавки стержней из алюминия, меди и латуни.
Но для отопления помещений конструкция не подойдет по причине малой мощности. В интернете есть два реальных варианта, чьи испытания и работа засняты на видео:
- водонагреватель из полипропиленовой трубы с питанием от сварочного инвертора либо индукционной кухонной панели;
- стальной котел с нагревом от той же варочной панели.
Справка. Существуют и другие, полностью самодельные конструкции, где преобразователи частоты умельцы собирают с нуля. Но для этого нужны знания и навыки в области радиотехники, поэтому рассматривать их мы не будем, а просто приведем пример такой схемы.
Теперь давайте подробнее разберем, как делаются индукционные нагреватели своими руками, а главное, — как они потом функционируют.
Изготавливаем нагревательный элемент из трубы
Если вы плотно занимались поиском информации по данной теме, то наверняка столкнулись с этой конструкцией, поскольку мастер выложил ее сборку на популярном видеоресурсе YouTube. После чего многие сайты разместили текстовые версии изготовления этого индуктора в виде пошаговых инструкций. Вкратце нагреватель делается так:
- Внутрь трубы из полипропилена диаметром 40 мм и длиной 50 см наталкиваются металлические ершики для мытья посуды (можно рубленую проволоку — катанку). Они должны притягиваться магнитом.
- К трубе припаиваются отводы с резьбами для подключения к отопительной сети.
- Снаружи вдоль корпуса приклеиваются 4—5 стержней из текстолита. На них наматывается провод сечением 1.7—2 мм² со стеклоизоляцией, применяющийся в сварочных трансформаторах.
- Варочная панель разбирается и «родной» индуктор плоской формы демонтируется. Вместо него подключается самодельный нагреватель из трубы.
Важный нюанс. Длину и сечение провода для намотки катушки следует определять по штатному индуктору печки, чтобы она соответствовала мощности полевых транзисторов в электросхеме. Если взять больше провода, то упадет мощность нагрева, меньше – перегреются и выйдут из строя транзисторы. Как это выглядит визуально, смотрите на видео:
Как нетрудно догадаться, роль нагревательного элемента здесь играют металлические ершики, находящиеся в переменном магнитном поле катушки. Если запустить варочную панель на максимум, одновременно пропуская через импровизированный котел проточную воду, то ее удастся нагреть на 15—20 °С, что и показали испытания агрегата.
Поскольку мощность большинства индукционных плит лежит в пределах 2—2.5 кВт, то с помощью теплогенератора можно обогреть помещения общей площадью не более 25 м². Есть способ увеличить нагрев, подключив индуктор к сварочному аппарату, но здесь есть свои сложности:
- Инвертор выдает постоянный ток, а нужен переменный. Для подсоединения индукционного нагревателя аппарат придется разобрать и найти на схеме точки, где напряжение еще не выпрямлено.
- Нужно взять провод большего сечения и подобрать число витков путем расчета. Как вариант, медную проволоку Ø1.5 мм в эмалевой изоляции.
- Понадобится организовать охлаждение элемента.
Проверку работоспособности индуктивного водонагревателя автор демонстрирует в своем видео, представленном ниже. Испытания показали, что агрегат требует доработки, но конечный результат, к сожалению, неизвестен. Похоже, что умелец оставил проект незавершенным.
Как собрать индукционный котел
В этом случае дешевую китайскую плиту разбирать не нужно. Суть в том, чтобы сварить по ее размерам котловой бак, руководствуясь пошаговой инструкцией:
- Возьмите стальную профильную трубу 20 х 40 мм с толщиной стенки 2 мм и нарежьте из нее заготовок по ширине панели.
- Сварите трубки между собой по длине, стыкуя меньшими сторонами.
- Сверху и снизу к торцам герметично приварите железные крышки. Сделайте в них отверстия и поставьте патрубки с резьбами.
- К одной из сторон прикрепите сваркой 2 уголка, чтобы они образовали полку для индукционной печки.
- Покрасьте агрегат термостойкой эмалью из баллончика. Подробнее процесс сборки показан в видеоролике.
Окончательная сборка и запуск заключается в монтаже котла на стену и его врезке в систему отопления. Варочная панель вставляется в гнездо из уголков на задней стенке бака и подключается к электросети. Остается заполнить систему теплоносителем, стравить воздух и включить нагрев индуктора.
Здесь вас подстерегает та же проблема, что встречалась с предыдущей моделью. Несомненно, индукционный нагрев будет работать, но его мощности 2.5 кВт хватит для обогрева парочки небольших комнат при морозе на улице. Осенью и весной, когда температура не опустилась ниже нуля, самодельный котел сможет отопить площадь 35—40 м². Как его правильно подключить к системе, смотрите в очередном видеосюжете:
Первый
Проволоку необходимо нарезать на отрезки, длинной примерно 5 см. Данными отрезками заполнить сердечник, который после закупоривается проволочной сеткой. Установить переходник от трубы там, где нагреватель будет подключен к отоплению. Далее на нагреватель нужно намотать проволоку, длина которой должна составлять около 16 м.
После этого сердечник подключается к отоплению, сам нагреватель к инвертору. Обратите внимание, перед тестированием нужно убедиться, что внутри устройства есть вода. Если включить его без воды, оно очень быстро перегреется и расплавится.
Второй
Относительно первого варианта, этот намного проще, но требует дополнительных затрат. В качестве основы берется длинная труба. Примерно на метр с ее поверхности необходимо снять краску. Когда краска будет снята, очищенный участок нужно покрыть тканью электротехнической в 3-4 слоя. Следом, поверх ткани, наматывается проволока из меди, образуя катушку.
Собранный прибор изолируется, остается только подключить его к инвертору.
Обязательная техника безопасности
Любые работы, производимые с электричеством, в особенности если работы тем или иным образом подразумевают участие/использование в процессе воды, требуют полного соблюдения требований безопасности.
Техника безопасности должна соблюдаться абсолютно всегда, с особой тщательностью в тех случаях, когда осуществляется самостоятельная сборка прибора, с использованием самостоятельно приобретенных навыков и знаний.
Кроме этого, перед началом любых работ первоначально необходимо досконально изучить теоретическую часть. Это позволит более детально разобраться в предстоящей работе, исключить возможные ошибки и недопонимания.
В рамках этой статьи мы рассмотрели несколько способов изготовления нагревательного прибора своими руками. Фото индукционного нагревателя, инструкцию и рекомендации по использованию можно найти в интернете.
Обратите внимание, в случае с самодельными индукционными нагревателями, их нельзя устанавливать в жилых помещениях. Это обусловлено электромагнитным излучением, которое исходит изнутри и снаружи от катушки. Фактически, оно будет нагревать не только сердечник, но и металлические предметы, приборы, которые попадают под воздействие магнитного поля.
Рекомендуется применять только с оцинкованным экраном, чтобы исключить такую вероятность.
Индукционный нагрев своими руками. Техника съема энергии с трансформатора тока
Индукционный нагрев своими руками. Техника съема энергии с трансформатора тока
Целью является практическая реализации обогрева дома с использованием техники индукционной плавки металлов. Идея, не обладает новизной и состоит в том, чтобы индуктор разместить вокруг трубы отопления. Нагревая трубу, тем самым мы нагреваем воду которая циркулирует в системе отопления. Базовой предпосылкой, которая может значительно снизить затраты на электроэнергию является колебательный контур (индуктор->конденсаторы) который работает в резонансе. Возникает повышение напряжения примерно в десятки раз, которым и осуществляется нагрев металла.
Классические индукционные схемы, как показала практика замены выходящих из строя транзисторов, требует дорогой элементной базы. За основу была взята схема индукционного нагрева использующая ZVS (zero voltage switching) метод переключения транзисторов. Схема взята с сайта https://www.rmcybernetics.com/projects/DIY_Devices/diy-induction-heater.htm.
В собранной схеме, были использованы транзисторыы STP40N10, диоды шоттки 50SQ100 5A,100В; резисторы 240 ОМ, измереенная ёмкость батареи конденсаторов CBB81/224/2000V — 2,3 мкф. Магнитная проницаемость ферритового кольца — L2, по заявлению продавца 10000, но схема запускается с ферритовым кольцом. Источниеи питания — два аккумулятора замененны на трансформатор ОСМ1-1.6 c переменным напряжением 24 вольта и постоянным на конденсаторе порядка 27 Вольт. Схема заработала сразу, каких либо настроек не протребовалось. Более или менее интересный результат при данном размере индуктора начинается от 20 вольт.
Напряжение на каждом из транзисторов относительно корпуса по 800 Вольт, не важно где мерять. Частота работы схемы без металлической трубы в индукторе, 321 Кгц, ток потребления 1,7 Ампера. При добавлении металлической трубы частота понижается до 138 Кгц, ток потребления вырастает до 5А. Труба 0,5 дюйма, индуктором с внутренним диаметром 85 мм нагревается в районе средней точки до вишневого цвета.
Лучше всего в таких схемах использовать плёночные конденсаторы фирм Evox Rifa,Faratronic,Pilcor. КПД поднимется,да и количество кондёров потребуется в разы меньше. Ток потребления определяется заполнением индуктора металлом. Стоит использовать под бесшовную трубу с максимальной толщиной стенок. При токе потребления более 12 ампер, транзисторы STP40N10 долго не живут. Рекомендованное на сайте водяное охлаждение не используется. Греются радиатор и индуктор, конденсаторы холодные. Для охлаждения транзисторных радиаторов я использовал вентилятор от компьютера. При необходимости отвод тепла можно организовать на тот же стояк отопления.
Трансформатор тока. Вторым, не менее, если не более интересным способом нагрева теплоносителя является трансформатор тока. Трансформатор тока представляет из себя ферритовое кольцо, установленное на проводе идущем от блока конденсаторов к индуктору. Подойдут ферритовые кольца, любой магнитопроницаемости. В том числе и кольцо из трансформаторного железа. Чем ниже магнитная проницаемость магнитопровода, тем меньший радиус кольца допустим, тем ниже частота тока на выходе, тем сильнее греется магнитопровод. В случае использования трансформаторного железа эффективность нагрева максималена. Ферритовые кольца с внутренним диаметром менее 60мм для длительной работы схемы не использовать. При малом, внутреннем, диаметре ферритового кольца, менее 50мм , резко растает ток потребления, необходимый для поддержания резонанса, транзисторы выходят из строя. В случае использования сердечника от ТВС необходим зазор, это не по феншую. В случае встречной намотки обмоток, как показано на фотографии, эдс отсутсвует.
Ниже представлена схема подключения нагрузки. Лампу 220В 95W включать без диодного моста можно, но при этом следует уменьшить число витков трансформатора тока примерно до пяти, иначе лампа эффектоно сгорит. На сдвоенную пару витков, используемых в намотке обращать внимание не стоит. Так же следует поступить с парой проводов черный и красный, на транзисторных радиаторах к ним подключались высоковольтные конденсаторы от СВЧ печей. Конденсаторы сильно грелись, пришлось их заменить, провода пусть пока будут.
Ферритовые кольца размещенные в индукторе увеличивают частоту до 400 кГц, токовый трансформатор ее понижает до 100 кГц. Яркость свечения лампы регулируется частотой за счет увеличения либо уменьшения сердечника из ферритовых колец в индукторе.
На тестере видно, что при подключении нагрузки ток вырос на два ампера. (В первом случае ток необходимо умножить на 100) Это примерно равно мощности используемой лампы. Безвомездного съема энергии с токового трансформатора нет. Подключение активной нагрузки увеличивает ток потребляемый устройством. А вот использовать ферритовые кольца для нагрева теплоносителя в дополнение к индуктору — очень интересный вариант.
Дуговой разряд. На каждые три-четыре витка токового трансформатора приходится 1000 вольт. Попытка замера напряжения на большем числе витков закончилась неудачей по причине выхода из строя тестера. Можно предположить, что напряжение на токовом рансформаторе около пяти-шести тысяч вольт, поэтому третьим источником тепла, в предлагаемой схеме является дуговой разряд. Как его еспользовать для нагрева теплоносителя, я пока не решил. Плавится все с чем дуговой разряд находится в тесном контакте.
Промежуточный итог. 1. Осуществлять нагрев трубы отопления токами фуко. 2. Дополнительная тепловая мощность за счет охлаждения радиаторов, на которых установлены транзисторы. 3. Охлаждения феррита токового трансформатора теплоносителем (водой). 4. Использование дугового разряда — проблематично. Очень высокая температура. Но очень перспективно. Наличие дуги не увеличивает потребление тока устройством.
Пример страниц руководства:
Скачать руководство полностью:
А.Мищук — Индукционный нагрев. Техника съема энергии с трансформатора тока.pdf
31.01.2014
Смотрите также:
- Трансформатор П-600 на эффекте бегущей волны
- Опять девайс Free Energy! Трансформатор Кулдошина своими руками (видео victordok)
- Трансформатор Тесла на качере Бровина своими руками и съем энергии. Радиантная энергия. Беспроводная передача энергии
- Немного о трансформаторах
- Простой индукционный нагреватель своими руками
Оценить самоделку, мастер-класс, идею. Комментарии