Принцип работы и условия эксплуатации пароводяных теплообменников

Особенности подключения к системе горячего водоснабжения

Если для сушилки полотенец используется отдельный отвод (последовательное подключение к системе горячего водоснабжения), а вода из него выводится через источники внутри квартиры, то установка полотенцесушителя на горячую воду проводится без дополнительных работ. Но при таком подключении сушки для полотенец снижается температура горячей воды. Его обычно используют в небольших домах.

Цены на сушилки разного типа в магазине

Чаще устройство подключается к водопроводу, заменяя часть стояка, такое можно увидеть в ванной в панельном доме. При установке полотенцесушителя на стояк горячего водоснабжения необходима дополнительная страховка в виде байпаса.

Пластинчатые теплообменники области применения

Пластинчатые теплообменники применяются в системе отопления дома, горячего водоснабжения, в системах кондиционирования в больших коттеджах, школах, садах, бассейнах, в целых микрорайонах, а также в системе отопления домов сельской местности. Широкое применение пластинчатые теплообменники нашли в пищевой промышленности.

Теплообменники для отопления имеют ряд неоспоримых преимуществ по сравнению с остальными устройствами, используемыми для создания подходящего микроклимата.

Подобные отопительные приборы обладают рядом преимуществ над другими видами.

Положительные качества

Среди основных положительных качеств устройства, обеспечивающего отопление, можно отметить следующие:

  • высокий уровень компактности;
  • пластинчатые теплообменники имеют высокий коэффициент теплопередачи;
  • коэффициент тепловых потерь максимально низкий;
  • потери давления находятся на минимальном уровне;
  • выполнение монтажно-наладочных, ремонтных и изоляционных работ требует низких финансовых затрат;
  • при возможном засорении это устройство может быть разобрано, очищено и собрано обратно всего двумя рабочими уже через 4-6 часов;
  • имеется возможность добавить мощность пластинам.

https://youtube.com/watch?v=pOTVV58Rj3U

Кроме того, благодаря своей простоте подключение теплообменника к системе отопления может быть осуществлено просто на полу в тепловом пункте или на обычной несущей конструкции блочного теплового пункта. Отдельно стоит отметить низкий уровень загрязняемости поверхности теплообменника, что вызвано высокой турбулентностью потока жидкости, а также благодаря качественной полировке используемых теплообменных пластин. На сегодняшний срок эксплуатации уплотнительной прокладки у ведущих европейских производителей составляет не менее 10 лет. Срок же службы пластин составляет 20-25 лет. Стоимость замены уплотнительной прокладки может составлять 15-25% от общей стоимости всего агрегата.

Очень важно, что после проведения детального расчета конструкцию современного пластинчатого теплообменника можно изменить под необходимые и указанные в техническом задании характеристики (вариативность конструкции и изменяемость задачи). Абсолютно все пластинчатые теплообменники устойчивы к высокому уровню вибрации

У современных аппаратов системы отопления последствия возможных гидроударов сведены практически к нулю.

Пластинчатый теплообменник моноблок. В чем преимущества и недостатки?

Двухступенчатая система ГВС смешанного типа, на сегодняшний день, имеет широкое применение в сфере ЖКХ. В индивидуальном тепловом пункте (ИТП) главным звеном этой системы является пластинчатый теплообменник — моноблок. Он представляет собой двухступенчатый пластинчатый теплообменник. Первая и вторая ступень теплообменника заключены в один корпус. Для работы этого типа теплообменников нужны 6 патрубков для входа и выхода рабочих сред. Количество рабочих сред может достигать 4 шт.: — Нагреваемая среда (обычно это холодная водопроводная вода) — Греющий теплоноситель (котельная, тепловые сети) — Теплоноситель из “обратки” теплообменника отопления

Рассмотрим на примере принцип работы теплообменника-моноблока системы ГВС. Главной задачей этого теплообменника является нагрев холодной водопроводной воды с 5С до 60С. В отличие от стандартного теплообменника гвс, нагрев происходит в две ступени. Нагрев холодной воды в первой ступени происходит с 5С до 33С, при этом греющий теплоноситель 70С поступает из тепловой сети. Во второй ступени, идет догрев холодной воды с 33С до 60С, а к греющему теплоносителю из тепловой сети мы подмешиваем теплоноситель из “обратки” теплообменника отопления. Температуры мы указали ориентировочные, они могут отличаться в зависимости от источника тепла и условий эксплуатации.

Основной сферой применения теплообменников-моноблоков являются системы горячего водоснабжения. Также данное оборудование применяется при охлаждении пищевых сред (сусло, молоко..), когда в системе используются два разных охладителя.

Чтобы вы могли понять, насколько целесообразно применение данного вида оборудования в вашей инженерной системе, мы предлагаем рассмотреть преимущества и недостатки теплообменника моноблока.

Преимущества: — Компактные размеры. Повторимся, что моноблок состоит из двух теплообменников, объединённых в один корпус. Это всегда займет меньше места, чем два отдельных теплообменника. — Цена. Два теплообменника в одном корпусе всегда дешевле, чем установка двух отдельных теплообменников. — Экономия на обвязке. Обвязка теплообменника-моноблока, пусть и с 6 патрубками обойдется дешевле, чем обвязка двух отдельных теплообменников. Сэкономить получится, в основном, за счет трубопроводной арматуры.

Недостатки: — Сложность подключения. Из-за близкого расположения всех 6 патрубков, сложно проводить сварочные и монтажные работы для подключения теплообменника к инженерным сетям. Особенно это ощущается в тесных помещениях тепловых пунктов. — Сложность обслуживания. В моноблоке на задней плите есть два патрубка, к которым подключены трубопроводы. Это делает ее неподвижной и создает сложности при разборке теплообменника. Проведение сервисных работ сильно усложняется, в отличие от обычного теплообменника с подвижной задней плитой. — Надежность. При поломке теплообменника моноблока мы получаем полностью вышедшую из строя систему ГВС. В случае работы двух отдельных теплообменников, при поломке одного из них, мы сможем работать дальше на 50% нагрузке. — Сложность расчета. В этом теплообменнике присутствует несколько сложных моментов, которые необходимо точно рассчитать. 1) Подмес теплоносителя от теплообменника отопления к греющему теплоносителю. 2) Держать в рамках расчета гидравлические потери в обоих ступенях и т.д.

Подводя итог, можно сказать, что два отдельных теплообменника всегда надежнее, чем один теплообменник, при выполнении одной и той же задачи. Но моноблок позволяет сэкономить средства. В этой ситуации, при выборе между моноблоком и двумя отдельными теплообменниками, следует выбрать оптимальное соотношение между надежностью и экономией средств.

Пример расчета пластинчатого теплообменника моноблока для системы ГВС.

Срок изготовления теплообменника — 1 день. Цена теплообменника — 115 000 руб.

Из чего состоит современный теплообменник

Теплообменник современного типа состоит из нескольких частей, каждая из которых играет свою важную роль:

  • неподвижной плиты, к которой присоединяются все подводимые патрубки;
  • прижимной плиты;
  • теплообменных пластин со вставленными прокладками уплотнительного типа;
  • верхней и нижней направляющих;
  • задней стойки;
  • шпилек с резьбой.

На данном изображении представлен кожухотрубный теплообменник.

Благодаря такой уникальной конструкции теплообменник способен обеспечивать наиболее эффективную компоновку всей поверхности используемого теплообменника, что дает возможность создавать небольшой по габаритам аппарат отопления. Абсолютно все пластины в собранном пакете одинаковы, только часть из них развернута к другой под углом в 180 градусов. Именно поэтому во время необходимого стягивания всего пакета должны образовываться каналы. Именно через них во время процесса нагрева и протекает рабочая жидкость, принимающая участие в теплообмене. Благодаря такой компоновке элементов системы достигается правильное чередование каналов.

На сегодняшний день можно смело утверждать, что теплообменники пластинчатого типа из-за своих технических характеристик являются более популярными. Ключевой элемент любого современного теплообменника — это теплопередающие пластины, которые изготавливаются из стали, не подверженной коррозии, толщина пластин находится в диапазоне от 0,4 до 1 мм. Для изготовления используется высокотехнологичный метод штамповки.

Во время работы пластины прижимаются друг к другу, образуя тем самым щелевые каналы. Лицевая сторона каждой из таких пластин имеет специальные канавки, куда специально устанавливается резиновая контурная прокладка, которая обеспечивает полную герметичность каналов. Всего имеется четыре отверстия, два из них необходимы для обеспечения подвода и отвода нагреваемой среды к каналу, а два другие отвечают за предотвращение случаев перемешивания греющей и нагреваемой сред. На случай прорыва одного из малых контуров пластинчатые теплообменники защищены дренажными пазами.

Если имеет место большая разница в расходе сред и совсем небольшое отличие в конечных температурах, то есть возможность многократно использовать теплообменный процесс, который будет происходить через петлеобразное направление потоков.

Использование теплообменников пластинчатого типа для обеспечения ГВС

Нагрев воды через теплосети полезен в экономическом плане, так как теплообменники, при сравнении их с классическими котлами на электрической или газовой энергии, работают лишь на систему отопления, и ни на что больше. В итоге себестоимость горячей воды за литр будет намного ниже.
Теплообменники пластинчатого типа применяют энергию тепла в теплосетях для того, чтобы нагревать обыкновенную воду из водопровода. Нагреваясь за счет пластин теплообмена, горячая вода проникает во все точки для разбора воды, включая смесители, краны, душ.

При этом важно учесть и то, что нагреваема вода и вода, которая является носителем тепла, никак не взаимодействуют друг с другом в рамках обменника тепла. Среды для течения вод разделены между собой пластинками, размещенными в теплообменном аппарате, поэтому через них и проходит теплообмен.

Использовать воду, находящуюся в отопительных системах, нельзя для обеспечения бытовых нужд, это вредно и нерационально. Объясняется следующими причинами:

  • 1. Процессы подготовки воды для оборудования и котлов — это дорогая и, чаще всего, сложная процедура, которая требует специальных знаний, опыта и навыков.
  • 2. Для того чтобы смягчить воду и сделать ее менее жесткой для отопительной системы, применяются реагенты и химикаты, которые отрицательно сказываются на человеческом здоровье.
  • 3. В отопительных трубах за много лет скапливается большое количество отложений, также представляющих вред для человека и его здоровья.

Тем не менее, никто не запрещает использовать такую воду не по прямому назначению, а косвенно, ведь теплообменник для горячей воды отличается высокими показателями КПД.

Двухступенчатая последовательная схема.

Сетевая вода разветвляется на два потока: один проходит через регулятор расхода РР, а второй через подогреватель второй ступени, затем эти потоки смешиваются и поступают в систему отопления.

При максимальной температуре обратной воды после отопления 70ºС

и средней нагрузке горячего водоснабжения водопроводная вода практически догревается до нормы в первой ступени, и вторая ступень полностью разгружается, т.к. регулятор температуры РТ закрывает клапан на подогреватель, и вся сетевая вода поступает через регулятор расхода РР в систему отопления, и система отопления получает теплоты больше расчетного значения.

Если обратная вода имеет после системы отопления температуру 30-40ºС

, например, при плюсовой температуре наружного воздуха, то подогрева воды в первой ступени недостаточно, и она догревается во второй ступени. Другой особенностью схемы является принцип связанного регулирования. Сущность его состоит в настройке регулятора расхода на поддержание постоянного расхода сетевой воды на абонентский ввод в целом, независимо от нагрузки горячего водоснабжения и положения регулятора температуры. Если нагрузка на горячее водоснабжение возрастает, то регулятор температуры открывается и пропускает через подогреватель больше сетевой воды или всю сетевую воду, при этом уменьшается расход воды через регулятор расхода, в результате температура сетевой воды на входе в элеватор уменьшается, хотя расход теплоносителя остается постоянным. Теплота, недоданная в период большой нагрузки горячего водоснабжения, компенсируется в периоды малой нагрузки, когда в элеватор поступает поток повышенной температуры. Снижение температуры воздуха в помещениях не происходит, т.к. используется теплоаккумулирующая способность ограждающих конструкций зданий. Это и называется связанным регулированием, которое служит для выравнивания суточной неравномерности нагрузки горячего водоснабжения. В летний период, когда отопление отключено, подогреватели включаются в работу последовательно с помощью специальной перемычки. Эта схема применяется в жилых, общественных и промышленных зданиях при соотношении нагрузок Выбор схемы зависит от графика центрального регулирования отпуска теплоты: повышенный или отопительный.

Преимуществом

последовательной схемы по сравнению с двухступенчатой смешанной является выравнивание суточного графика тепловой нагрузки, лучшее использование теплоносителя, что приводит к уменьшению расхода воды в сети. Возврат сетевой воды с низкой температурой улучшает эффект теплофикации, т.к. для подогрева воды можно использовать отборы пара пониженного давления. Сокращение расхода сетевой воды по этой схеме составляет (на тепловой пункт) 40% по сравнению с параллельной и 25% — по сравнению со смешанной.

Недостаток

– отсутствие возможности полного автоматического регулирования теплового пункта.

Схемы подключения

У теплообменника, работающего по принципу вода-вода, есть несколько различных схем подключения, однако контуры первичного типа монтируются к трубкам распределения тепловой сети (она может быть частной или реализуемой городскими службами), а контуры вторичного типа — к трубопроводу водоснабжения.
Чаще всего только от решений по проекту зависит то, какой тип подключения разрешено применять. Также схема монтажа и ее выбор основаны на нормах «Проектирования теплопунктов» и в стандарте СП под номером 41-101-95. Если соотношение и разница максимально возможного водного теплопотока на ГВС к теплопотоку на отопление определено в рамках от ≤0,2 до ≥1, то основой является схема подключения в одну ступень, а если от 0,2≤ до ≤1, то из двух степеней.

Стандартная


Самая простая для реализации и экономически выгодная схема — это параллельная. При такой схеме теплообменники монтируются последовательно по отношении к регулирующей арматуре, то есть запорному клапану, а также параллельно всей тепловой сети. Для того чтобы достичь максимального обмена тепла внутри системы, необходимы высокие показатели расхода носителей тепла.

Двухступенчатая схема


Двухступенчатая смешанная система
Если использовать двухступенчатую схему, то при ней нагрев воды происходит или в паре независимых аппаратов, или в установке моноблока. При этом важно помнить о том, что схема монтажа и ее сложность будут зависеть от общей конфигурации сети. С другой стороны, при схеме из двух ступеней повышается уровень КПД всей системы, а также снижается расход носителей тепла (примерно до 40 процентов).

При такой схеме подготовка воды происходит за два шага. В ходе первого шага применяется тепловая энергия, нагревающая воду до 40 градусов, а в ходе второго шага вода греется до 60 градусов.

Подключение последовательного типа


Двухступенчатая последовательная схема
Такая схема реализуется в рамках одного из аппаратов для теплообмена ГВС, причем данный тип обменника тепла намного сложнее по устройству, если сравнивать его со стандартными схемами. Также он будет стоить намного дороже.

Зависимая схема с трёхходовым клапаном и циркуляционными насосами

Зависимая схема подключения теплового пункта системы отопления к источнику тепла с трёхходовым клапаном регулятора теплового потока и циркуляционно-смесительными насосами в подающем трубопроводе системы отопления.

Данную схему в ИТП применяют при соблюдении условий:

1 Температурный график работы источника тепла (котельной) превышает либо равен температурному графику системы отопления. Тепловой пункт подключённый по данной принципиальной схеме может работать как с подмесом к подаче потока из обратного трубопровода, так и без него, то есть пустить теплоноситель из подающего трубопровода тепловой сети напрямую в систему отопления.

Например расчётный температурный график системы отопления 90/70°C, равен температурному графику источника, но источник независимо от внешних факторов всё время работает с температурой на выходе 90°C, а для системы отопления подавать теплоноситель с температурой в 90°C нужно лишь при расчётной температуре наружного воздуха (для Киева -22°C). Таким образом в тепловом пункте к воде, поступающей от источника будет подмешиваться остывший теплоноситель из обратного трубопровода пока температура наружного воздуха не опустится до расчётного значения.

2 Подключение теплового пункта выполнено к безнапорному коллектору, гидравлической стрелке или теплотрассе с разницей давлений между подающим и обратным трубопроводом не более 3м.вод.ст..

3 Давление в обратном трубопроводе источника тепла в статическом и динамическом режимах превышает как минимум на 5м.вод.ст высоту от места подключения теплового пункта до верхней точки системы отопления (статику здания).

4 Давление в подающем и обратном трубопроводе источника тепла, а также статическое давление в тепловых сетях не превышают максимально допустимого давления для системы отопления здания подключённой к данному ИТП.

5 Схема подключения теплового пункта должна обеспечивать автоматическое качественное регулирование системой отопления по температурному или временному графику.

Описание работы схемы ИТП с трёхходовым клапаном

Принцип работы данной схемы схож с работой первой схемы за исключением того, что трёхходовым клапаном может быть полностью перекрыт отбор из обратного трубопровода, при котором весь теплоноситель, поступающий от источника тепла без подмеса будет подан в систему отопления.

В случае полного перекрытия подающего трубопровода источника тепла, как и в первой схеме, в систему отопления будет подаваться только вышедший из неё теплоноситель, отбираемый из обрата.

Зависимая схема с трёхходовым клапаном, циркуляционными насосами и регулятором перепада давления.

Применяется при перепаде давления в месте подключения ИТП к тепловой сети превышающем 3м.вод.ст.. Регулятор перепада давления в данном случае подбирается для дросселирования и стабилизации располагаемого напора на вводе.

Принцип работы пластинчатого теплообменника Ридан

Передача тепла в пластинчатых теплообменниках осуществляется от горячего теплоносителя к холодной (нагреваемой) среде через стальные гофрированные пластины, которые установлены в раму и стянуты в пакет. В процессе теплообмена жидкости движутся навстречу друг другу (в противотоке). В местах их возможного перетекания находится либо стальная пластина, либо двойное резиновое уплотнение, что практически исключает смешение жидкостей. Все пластины в пакете пластинчатого теплообменника одинаковы, только развернуты одна за другой на 180°, поэтому при стягивании пакета пластин образуются каналы, по которым и протекают жидкости, участвующие в теплообмене. Такая установка пластин обеспечивает чередование горячих и холодных каналов. Вид гофрирования пластин и их количество, устанавливаемое в раму, зависят от эксплуатационных требований к пластинчатому теплообменнику. В теплообменниках «Ридан» применяются пластины датской компании Sonde.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]