Применение психрометрического метода измерения в промышленности
Существует множество различных методов измерения относительной влажности воздуха. И наряду с такими современными методами, как конденсационный («зеркало точки росы») или емкостной, по прежнему не теряет актуальности психрометрический метод измерения, благодаря своей простоте и доступности. Зачастую психрометры можно увидеть на стенах квартир или офисов (см. рисунок 1).
Рисунок 1 — Внешний вид психрометра Августа
Любой человек может по показаниям двух термометров и психрометрической таблице, изображенной на его корпусе, определить относительную влажность окружающего воздуха с приемлемой для бытового измерителя влажности точностью. Но какие есть особенности у данного метода измерения и насколько он применим в качестве промышленного гигрометра?
Популярные виды приборов
Порядок и особенности измерения уровня влажности гигрометром зависят от вида используемого лабораторного оборудования. Такие приборы отличаются между собой устройством, принципом работы и рядом других параметров.
По конструкции гигрометры бывают механическими и электронными. Первые имеют циферблат со стрелкой, вторые – дисплей, на который выводится информация.
По принципу действия существуют такие типы приборов:
- пленочные;
- волосные;
- весовые;
- емкостные;
- резистивные;
- керамические;
- конденсационные;
- электролитические;
- психометрические.
Пленочные гигроскопы имеют циферблат со стрелкой. Датчиком выступает специальная пленка. Она состоит из органического материала и соединена со стрелкой.
Под воздействием перепада влажности атмосферного воздуха пленка изменяет свой размер. Это приводит к тому, что стрелка смещается в правую либо левую сторону, показывая результат на циферблате.
Преимущество волосного гигрометра состоит в его простой конструкции. Этот прибор можно использовать при определении влажности воздуха при температуре ниже нуля градусов
Основным элементом волосных приборов является натянутый на рамку со стрелкой обезжиренный человеческий или синтетический волос. Принцип работы устройства схож с пленочными видами гигрометров.
При изменении влажности меняется длина волоса. Это приводит к отклонению стрелки в определенную сторону.
Весовые гигроскопы используются для расчета абсолютной влажности. Они оснащены трубками с гигроскопическим материалом. При прохождении воздушной массы наполнитель впитывает влагу и увеличивается в весе.
Забор пробы осуществляется специальным насосом. Систему взвешивают перед закачкой воздуха и после нее. Абсолютную влажность высчитывают, основываясь на полученных показателях, объеме пропущенной воздушной массы.
Емкостные гигрометры имеют в своем составе оксидный конденсатор. Его емкость изменяется в зависимости от концентрации влаги в воздухе. Такие модели необходимо периодически подвергать калибровке. Это связано с тем, что со временем емкость детектора снижается, что сказывается на точности измерения.
Резистивные гигроскопы работают по принципу изменения уровня влажности в зависимости от электрического сопротивления солей и полимеров. Керамические приборы состоят из циферблата со стрелкой. Датчиком выступает особая керамическая смесь (глина, кремний). Ее электролитическое сопротивление зависит от уровня влажности.
Керамические гигрометры показывают исключительно уровень влажности. Дополнительных функций в них нет. Но они точны и позволяют следить за изменением микроклимата в помещении
Приборы конденсационного типа еще называются гигрометрами Ламбрехта. Принцип действия оборудования базируется на использовании встроенного зеркала. Температура этого элемента изменяется вместе с температурой атмосферного воздуха.
Основным элементом электролитических приборов выступает стеклянная, полистирольная либо другая изоляционная пластина, покрытая слоем электролита. В зависимости от концентрации влаги в воздушной среде изменяется сопротивление электролита.
Конденсационный гигрометр отличается высокой точностью. Но для бытового использования он мало подходит из-за определенных сложностей использования
Психометрические гигрометры измеряют влажность атмосферного воздуха на основе понижения температуры смоченного тела. Они состоят из двух термометров: сухого и увлажненного.
Также оснащается прибор питателем – стеклянной колбой, которая заполняется водой. Расчет проводится исследователем самостоятельно. Помогает определить относительную влажность воздуха гигрометром таблица, прилагаемая к устройству.
Помимо приборов, существуют альтернативные способы измерения влажности. Подробнее – читайте далее.
Принцип действия психрометров
Принцип действия предельно прост — есть два термометра, зачастую ртутных или спиртовых. Один измеряет температуру окружающего воздуха («сухой» термометр), а второй измеряет температуру паров над поверхностью воды («влажный» термометр), для чего он расположен над резервуаром с водой (питателем) и обернут смоченной батистовой тканью для улучшения температурной проводимости (см. рисунок 2).
Рисунок 2 — Принцип действия
Рисунок 3 — Психрометр Ассмана
Суть метода заключается в том, что температура «мокрого» термометра всегда будет меньше температуры «сухого», поскольку согласно 1-му закону термодинамики, при испарении внутренняя энергия жидкости будет уменьшаться, а вместе с ней будет уменьшаться и ее температура как основная мера внутренней энергии.
Очевидно, что жидкость будет испаряться при текущей температуре воздуха тем интенсивнее, чем менее насыщен водяными парами окружающий воздух, и как следствие тем сильнее будет понижаться температура «мокрого» термометра. Таким образом: чем больше разница между показаниями «сухого» и «мокрого» термометров (психрометрическая разность), тем меньше относительная влажность окружающего воздуха.
Конструктивно различают несколько видов психрометров:
- обычные психрометры Августа
без принудительного обдува, рассмотренные выше (см. рисунок 1); - более продвинутые аспирационные психрометры Ассмана
(см. рисунок 3) со встроенным принудительным обдувом в виде механического или электрического вентилятора. Обдув (аспирация) нужен для того, чтобы задать строго определенную интенсивность испарения воды — как правило речь идет о скоростях 0,5-1 м/с; - психрометры, выполненные на базе двух термометров сопротивлений и подключенные к вторичным измерителям-регуляторам или ПЛК, которым также требуется принудительный внешний обдув.
Стандартные показатели
Влажность воздуха, то есть степень его насыщенности водяным паром, может быть абсолютной либо относительной. Первый показатель — это количество грамм влаги в одном кубометре воздуха, а второй — процентное соотношение абсолютной влажности и максимально возможной при заданной температуре. Говоря о том, какая влажность воздуха считается нормальной в квартире, подразумевают относительный показатель, определяющий комфортность микроклимата в помещении.
Действующим государственным стандартом предусмотрены следующие показатели допустимого уровня влаги в жилых помещениях:
- Лето. В жаркое время года оптимальная влажность должна варьироваться в пределах 30-60%, не превышая 70% (для отдельных регионов — 75%).
- Зима. Понижение температуры окружающей среды требует уменьшения уровня влаги до 30-45%, максимум — до 60%.
Это полезно: как повысить влажность воздуха в помещении.
Стоит заметить, что перечисленные нормы влажности воздуха в квартире предназначены главным образом не для её жителей, а для строителей и проектировщиков, задачей которых является возведение и обслуживание зданий с возможностью последующего поддержания указанных показателей. Самим же жителям домов медики советуют удерживать уровень влаги 40-60% в любое время года.
В этом видео вы узнаете, как измерить влажность воздуха:
Как рассчитывается относительная влажность психрометров?
Рассчитать относительную влажность по измеренным значениям психрометра возможно одним из 3-х способов.
Способ 1 — по психрометрическим таблицам
Пример подобной таблицы взят из ГОСТ 8.811-2012 «Таблицы психрометрические. Построение, содержание, расчетные соотношения» (см. рисунок 4). Они составляются на конкретную модель психрометра производителем и всегда нормируются при определенной скорости аспирации, чем зачастую пренебрегают пользователи, хотя без отсутствия аспирации погрешность очень сильно увеличивается.
Рисунок 4 — Пример психрометрической таблицы
Пример: показания «сухого» термометра 20 °С, а показания «мокрого» термометра 14 °С — тогда психрометрическая разность 6 °С. На пересечении соответствующих строки и столбца определяется искомая относительная влажность 48%.
Способ 2 — графический способ
Определить температуру «мокрого термометра» возможно при помощи ID диаграммы (диаграммы Молье, диаграммы Рамзина). Для понимания необходимо вспомнить о термине энтальпия
— это такая тепловая энергия (кДж), которую содержит тело массой 1 кг. Саму систему с резервуаром и «мокрым» термометром можно для упрощения принять как замкнутую термодинамическую систему за счет применения смоченной ткани, не сообщающуюся с окружающей средой, в которой воздух полностью насыщен водяным паром.
Таким образом, процесс испарения из резервуара психрометра происходит при постоянной энтальпии системы
. Обратимся к участку диаграммы (см. рисунок 5) — нас интересуют красные линии (температура), синие (относительная влажность) и розовые (энтальпия).
Рисунок 5 — Графическое определение относительной влажности по ID диаграмме
Возьмем данные из предыдущего примера: сначала проведем линию 1, соответствующую температуре «мокрого» термометра 14 °С, вплоть до пересечения с кривой 100% влажности (поскольку система насыщена). Затем проведем параллельно линию 3, соответствующую показаниям «сухого» термометра 20 °С. И наконец, проведем линию 2 параллельно линиям энтальпий (поскольку система не сообщается с окружающей средой) вплоть до пересечения с линией 3. Эта точка пересечения соответствует искомой относительной влажности — 50%, что примерно соответствует 48%, полученным при расчете по психрометрической таблице.
Также влажность определяют по специальным психрометрическим номограммам
, которые иногда приводятся в документации на конкретный психрометр.
Способ 3 — аналитический способ
Согласно уже упомянутому ранее ГОСТ 8.811-2012, относительную влажность φ можно найти из формулы 1, если вода в резервуаре находится в жидкой фазе (индекс w
означает
water
):
φ w = 1 − A ном P ном E w ( t ‘ ) f w ( P , t ‘ ) ( t − t ‘ ) ( 1 + a w t ‘ ) %varphi _w=1- { A _ном P _ном} over { E _w(t^’) f _w(P, t^’) } ( t-t^’) ( 1+a _w t^’)
или из формулы 2, если вода в резервуаре находится в твердой фазе (индекс i
означает
ice
):
φ w = 1 − A ном P ном E w ( t ‘ ) f w ( P , t ‘ ) ( t − t ‘ ) k i %varphi _w=1- { A _ном P _ном} over { E _w(t^’) f _w(P, t^’) } ( t-t^’) k _i
где: t
– температура «сухого» термометра, °С;
t’
– температура «мокрого» термометра, °С;
Aном *
— номинальное значение психрометрического коэффициента, °С -1;
Pном
— номинальное значение общего давления паровоздушной смеси, гПа;
Ew(t’), Ei(t’) **
— давление насыщенного водяного пара над поверхностью воды и льда соответственно, гПа;
fw(P,t’), fi(P,t’) ***
— повышающая функция влажного воздуха/газа для воды и льда соответственно, зависящая от его общего давления и температуры поверхности раздела фаз;
ki = 0,8823, aw = 0,00115 °С -1
, если свойства дистиллированной воды отвечает требованиям ГОСТ 6709, а состав сухого воздуха отвечает требованиям ГОСТ 4401.
*Примечание 1
: значение психрометрического коэффициента определяется для конкретной модели психрометров самим производителем и очень сильно зависит от скорости аспирации — базовое значение, согласно рекомендациям ВМО, составляет 653*10-6 °С -1
**Примечание 2
: согласно ГОСТ 8.811-2012 эти величины рассчитываются по формуле Всемирной Метеорологической организации (ВМО), однако очень хорошие результаты дают также формулы Гоффа-Гретча и Ардена Бака, которые приведены в статье «
Новые возможности датчиков влажности серии D
»
***Примечание 3
: значение коэффициентов определяется из таблиц в приложении Ж ГОСТ 8.811-2012. Промежуточные значения коэффициентов определяют интерполяцией. Игнорирование этих коэффициент в расчетах вносит в измерение систематическую относительную погрешность до 0,8%.
Относительная влажность воздуха формула через температуру
Массовая доля пара зависит от температуры и поэтому чем выше температура, тем выше давление паров. Таким образом при понижении температуры пар перенасыщается и кристаллизуется или же образуется туман. Таблица относительной влажности помогает определить влажность зная температуру и не проводя сложные расчеты или измерения.
Определение влажности воздуха является необходимым по многим причинам. Это важный экологический показатель, который может очень сильно влиять на самочувствие человека в течение дня. В зависимости от этого показателя у человека может наблюдаться повышенная утомляемость, проблемы с концентрацией, памятью и с восприятием окружающей среды. А уже такое состояние организма способно стать причиной многих других отклонений, развивающихся на фоне постоянной усталости и стресса.
Вещи и продукты, которые находятся в офисе или квартире также подвержены влиянию влажности воздуха. Поэтому лучше всего контролировать этот показатель, чтобы избежать порчи имущества. У продуктов и вещей есть свои нормы хранения и использования и нарушение влажности воздуха может повлечь за собой различные разрушительные процессы. Так повышенные показатели очень часто становятся причиной появления плесени. Грибок может быть, как в продуктах питания, так и на стенах, одежде, растениях и в любых других теплых и влажных местах. Если же своевременно выявить нарушение, то можно избежать появления плесени и дальнейших разрушений.
Согласно общепринятым нормам влажность воздуха должна быть в пределах 45-65 процентов. Этот показатель является комфортным как для человека, так и для вещей и техники. Это приблизительное значение и тут могут быть свои особенности. Так для мебели и музыкальных инструментов лучше всего держать влажность в пределах 40-65 процентов. Особое внимание следует уделять влажности в библиотеках и музеях, где могут храниться старые предметы, книги и картины. Эти вещи особо чувствительны к влажности и поэтому влажность не должна превышать 40-60 процентов.
Факторы, влияющие на погрешность измерения психрометров
Исходя из аналитических формул, можно перечислить факторы, влияющие на измерение психрометрическим методом:
- агрегатное состояние воды в резервуаре (питателе)
— необходимо понимать, замерзла вода в питателе или нет, и в соответствие с этим рассчитывать относительную влажность либо по формуле 1, либо по формуле 2; - газовый состав воздуха и чистота дистиллированной воды
— наличие примесей разных концентраций в воздухе, а также загрязненность воды влияет на коэффициенты ki и aw, а как следствие на итоговую погрешность измерения. Также нельзя не упомянуть, что многие пользователи пренебрегают требованием к применению дистиллированной воды и используют обычную водопроводную воду, иногда фильтруя ее; - смоченность и чистота батистовой ткани
— напрямую влияет на погрешность измерений «мокрым» термометром, при этом учесть аналитически степень этого влияния невозможно. Многие пользователи пренебрегают этим фактором; - наличие принудительной аспирации
— очень важный параметр, оказывающий наиболее сильное влияние на погрешность измерения. Влияет на психрометрический коэффициент Aном. В случае применения психрометров Ассмана, этот фактор можно не учитывать, поскольку принудительная аспирация с требуемой скоростью обдува заложена конструктивно. Однако зачастую применяются психрометры Августа без какой-либо внешней аспирации, что приводит к большому увеличению погрешности измерения; - величина атмосферного давления
— определяет величину давления паровоздушной смеси Pном, а также незначительно влияет на значение повышающих функций fw(P,t’), fi(P,t’). В случае работы на уровне моря, давление можно принять равным 1013,25 гПа (согласно нормальным условия из ГОСТ 8.395-80) и пренебречь колебаниями атмосферного давления, однако в случае работы на высоте свыше 200-300 метров влиянием барической ступени уже нельзя пренебрегать, и в расчетах необходимо учитывать реальное значение атмосферного давления.
При соблюдении перечисленных выше условий, результирующая погрешность измерения относительной влажности, согласно государственным метрологическим методикам, для простых психрометров составит 5-7%, а для аспирационных психрометров 3-5%.
Однако в случае использования психрометров в промышленности, возникает ряд дополнительных трудностей.
Прибор для измерения влажности воздуха и его специфика
Влажность оказывает влияние на состояние предметов обстановки, бытовой техники и самочувствие человека. Присутствие водяных паров в определенном количестве в воздуха зависит от следующих факторов: техногенное воздействие, климатические особенности региона, состояние коммуникаций и постройки в целом, а также эксплуатационные условия помещения.
Прибор для измерения влажности воздуха помогает контролировать оптимальный микроклимат в доме
Нормативом влажности для здорового человека считается показатель в 40-60%. Для создания оптимальных условий используются специальные приборы. В зависимости от потребностей это могут быть осушители или увлажнители. Для координации работы этих устройств используются измерители влажности воздуха.
Обратите внимание! Существуют системы кондиционирования с автоматизированной функцией контроля уровня влаги. Этот тип оборудования самостоятельно выполняет замер показателей воздуха и подгоняет их под норму.
Чем измеряют влажность воздуха в помещениях жилого типа
Измерить количество водяного пара в домашних условиях можно воспользовавшись подручными средствами, например, еловой шишкой, чьи чешуйки раскрываются, если в комнате сухо, или проследить за состоянием конденсата, предварительно охладив емкость с водой.
Если воздух в помещении сухой — чешуйки шишки раскроются
Метод, предполагающий использование емкости, основан на том, как ведет себя конденсат на охлажденных поверхностях и с какой скоростью происходит его испарение. Среда, находящаяся в закрытом пространстве при условии уравновешенных процессов конденсации и испарения, находится в состоянии насыщенного пара. Если количество влаги в насыщенном паре приближено к концентрации водяного пара в воздухе комнаты, то процесс испарения будет затруднен. Это будет указывать на присутствие чрезмерного количества влаги в помещении.
Как измерить влажность воздуха в квартире с помощью стакана:
- Наполнить стеклянную емкость водой. Для этих целей подойдет не только стакан, но и бутылка, банка.
- Установить емкость в холодильник на пару часов.
- После этого достать стакан и измерить температуру воды. Этот показатель не должен превышать 50°С.
- Контрольный сосуд следует поставить в комнате, подальше от отопительных приборов.
Популярный в народе способ измерения влажности воздуха — при помощи стакана с водой
Обратите внимание! Нужно обязательно засечь время, чтобы произвести наблюдение за поведением конденсата. На это потребуется от 5 до 10 мин.
Если скопившийся на стенках конденсат высохнет за обозначенное время, значит, в помещении сухо. Мокрое стекло говорит о том, что в комнате оптимальные условия с достаточным уровнем влажности. Если же капли конденсата крупные и ручейками стекают по стенкам сосуда — это указывает на повышенное количество водяных паров в помещении.
Какие приборы используют для измерения влажности воздуха
Более точные данные можно получить, воспользовавшись специальными приборами. Для этих целей предусмотрено несколько разновидностей устройств. Самые примитивные приборы, измеряющие влажность воздуха в помещении, называются гигрометрами.
В эту категорию приспособлений входят следующие разновидности устройств:
- керамический;
- электронный;
- весовой;
- электролитический;
Принцип работы волосяного гигрометра
- конденсационный;
- волосяной;
- пленочный.
Каждый тип перечисленных приспособлений функционирует за счет определенного принципа работы, например, конструкционной особенностью волосяного устройства является наличие трубок U-образной формы. Конденсационный гигрометр считается самым точным. Он снимает измерения с минимальной погрешностью.
Существует еще одна категория приборов для измерения влажности воздуха, называются они психрометрами. Разновидности психрометров:
- станционный;
- дистанционный;
- аспирационный.
Дистанционный психрометр
Станционный вариант прибора – самый популярный из них. Его конструкция включает пару термометров, закрепленных на штативе. Сухой термометр показывает температуру воздуха в комнате, влажный обертывается тканью, один конец которой опускается в резервуар, заполненный жидкостью (водой).
Обратите внимание! Нельзя опускать конец влажного термометра непосредственно в резервуар, иначе он будет отображать температуру воды, а не воздушных масс, циркулирующих над ней. Между концом прибора и емкостью должно быть расстояние не менее 30-40 мм.
Психрометрический метод в промышленности
Психрометры Августа или Ассмана могут с успехом применяться в офисах, квартирах, домах, аптеках, при пропарке бетона, в небольших теплицах и простых инкубаторах — это простой и дешевый метод косвенного измерения относительной влажности. Причем многие из этих психрометров, распространенных на рынке, являются средствами измерения утвержденного типа, и при их поверке поверяют отдельно оба термометра, входящих в их состав, без использования генераторов влажного воздуха и эталонных гигрометров, что значительно упрощает саму процедуру.
Но также очевидно, что использование подобных психрометров во многих отраслях промышленности сопряжено с некоторыми особенностями:
- Так как применяются ртутные или спиртовые термометры, не имеющие аналогового или цифрового сигнала, невозможно интегрировать психрометры в систему автоматического управления технологическим процессом;
- Почти все таблицы или номограммы, идущие в документации на психрометры, составлены для области положительных температур, а также не учитывают поправочные коэффициенты в результате влияния перечисленных выше факторов. В этом случае требуется аналитический перерасчет коэффициентов, а без возможности реализации на контроллере в автоматическом режиме это создает большие затруднения для оператора;
- Во многих технологиях, таких как расстойка теста, выращивание грибов, сушка древесины, животноводство / птицеводство, в паровоздушной смеси присутствуют различные загрязняющие вещества или запыленность — это приводит к постепенному загрязнению воды в питателе и батистовой ткани, что увеличивает погрешность измерения;
- В некоторых применениях, таких как сушка макарон, кирпича, древесины, требуется контроль относительной влажности при постоянно высоких температурах свыше 70 °С. Во-первых, большинство доступных на рынке психрометров из-за применения в своем составе жидкостных термометров имеют ограничение по верхнему значению температуры окружающего воздуха 40-50 °С. Во-вторых, испарение воды из питателя будет происходить достаточно интенсивно и он достаточно быстро опорожнится — от оператора потребуется постоянный контроль уровня воды и смоченности ткани. В-третьих, при температурах свыше 100 °С измерение станет невозможным по причине кипения воды.
Таким образом, в случае применения в промышленности психрометров Ассмана или Августа, неустранимое влияние перечисленных выше факторов, таких как запыленность, присутствие в атмосфере агрессивных веществ и работа в условиях низких и/или высоких температур, приводит либо к невозможности применения данного метода вообще, либо увеличению погрешности измерения влажности по опыту вплоть до 10-15%, что недопустимо в ряде технологических процессов.
Также психрометрический метод возможно реализовать, как упоминалось ранее, на базе двух термосопротивлений типа Pt100 с классом точности А или АА — один датчик будет являться «сухим» термометром, а другой обернут тканью, помещен над резервуаром с водой и являться «мокрым» термометром. При этом их сигналы подключаются на внешний контроллер, что позволяет уже обеспечить вычисление относительной влажности в автоматическом режиме. Например, возможен следующий алгоритм реализации:
- В контроллер вводятся формулы 1 и 2, формулы расчета давления насыщенного водяного пара Ew(t’), Ei(t’), таблицы коэффициентов fw(P,t’), fi(P,t’), зависимость психрометрического коэффициента Aном от внешних факторов. Формулы расчетов приведены в статье «Новые возможности датчиков влажности Galltec+Mela D серии»
- К контроллеру подключается:
- внешний вентилятор, обеспечивающий постоянную скорость аспирации, при этом желательно контролировать наличие потока воздуха дискретным датчиком, чтобы определять момент, когда вентилятор выйдет из строя и вычисляемые значения не будут достоверными;
- внешний дискретный датчик, определяющий фазовое состояние воды. При невозможности применяется «упрощенный» алгоритм, когда по температуре «сухого» термометра в области -5…+5 °С происходит расчет значения относительной влажности по формуле 3: φ = φ w + φ i 2 %varphi={ %varphi _w+%varphi _i} over {2}
- датчики контроля уровня воды в резервуаре и клапан, который обеспечит автоматическое наполнение резервуара дистиллированной водой из-за ее испарения;
- ТЭНы для предварительного подогрева подаваемой дистиллированной воды до температуры, равной температуре «мокрого» термометра до того, как вода окончательно испарилась (если работа идет в области положительных температур). При отрицательных же температурах желательно подавать охлажденную воду с тем, чтобы ее переход в твердую фазу происходил как можно быстрее;
- опционально возможно подключение датчика абсолютного давления для обеспечения компенсации влияния атмосферного давления на измерения влажности.
- Вся система измерения защищается вентилируемым фильтрующим кожухом с тем, чтобы свести к минимуму влияние загрязняющих факторов и/или запыленности.
При таком подходе, можно добиться абсолютной погрешности измерения влажности вплоть до 2-3% без участия оператора в течении продолжительного времени.
В результате, пользователь может на базе программируемых логических контроллеров организовать полноценную систему непрерывного измерения относительной влажности психрометрическим методом в автоматическом режиме и с достаточно высокой точностью.
Как нормализовать микроклимат
Выяснив, какая влажность должна быть в доме, и измерив показатели в собственной квартире, следует также осведомиться о том, как добиться комфортного микроклимата. Дело в том, что излишне сухая атмосфера способствует удержанию в воздухе мельчайших пылевых частиц, которые ухудшают качество последнего и становятся причиной различных проблем со здоровьем, например:
- нарушений работы ЖКТ;
- головной боли и общей слабости;
- сухости слизистых оболочек и кожных покровов;
- понижения иммунитета.
Однако избыточное содержание водяных паров в воздушном пространстве комнат ничуть не лучше недостатка влажности, поскольку провоцирует активное размножение грибков, вызывающих хронические заболевания, в частности астму. Именно поэтому показатели влажности следует максимально приблизить к идеальным.
Методы повышения влажности
Как правило, воздух в помещении становится сухим в холодное время года, когда активно работают нагревательные приборы, а жильцы квартир пренебрегают регулярным проветриванием. Справиться с этой проблемой несложно, используя для увлажнения:
- Специальные приборы. Производители предлагают три вида увлажнителей, принцип действия которых основан на испарении жидкости из встроенного резервуара и подаче недостающей влаги в воздушное пространство: механические, паровые и ультразвуковые. Некоторые модели оборудованы дополнительными насадками для проведения ингаляций, что особенно актуально в периоды ОРЗ.
- Ёмкости с водой. Расставив контейнеры, наполненные водой, рядом с отопительными приборами, а также на тумбочках и шкафах, можно добиться практически такого же эффекта, как и от увлажнителя. По мере испарения жидкости в сосудах её уровень следует восполнять.
- Влажные полотенца. В течение отопительного сезона справиться с низким уровнем влажности поможет ткань, смоченная в воде и разложенная на батареях.
- Домашние цветы. Растения улучшают микроклимат в помещениях, поглощая углекислый газ, обогащая воздух кислородом и отдавая в атмосферу влагу.
- Аквариум. Обзаведясь аквариумом, можно убить сразу двух зайцев — восполнить недостаток влаги и украсить комнату. С той же целью в помещениях устанавливают декоративные фонтанчики с циркулирующей водой.
Избавление от лишней влаги
Повышенная влажность является чуть менее распространённой проблемой, поскольку чаще всего бывает вызвана внешними причинами — например, водоёмом, который находится вблизи жилища, ветхой кровлей или сырым подвалом. В этом случае отрегулировать уровень влаги в воздухе, не избавившись от источника проблемы, весьма затруднительно. Если же сырость связана с жизнедеятельностью обитателей помещения, для борьбы с ней можно воспользоваться:
- Осушители воздуха. Эти приборы подразделяются на компрессорные и адсорбционные. Первые загоняют влажный воздух в агрегат с помощью встроенных вентиляторов и протягивают через испаритель. В результате лишняя влага оседает на испарителе, а прогретый и осушенный воздух возвращается в помещение. В адсорбционных компрессорах находится специальное вещество, поглощающее избыток жидкости.
- Кондиционеры и масляные радиаторы. Современные устройства оснащены функцией регулировки уровня влаги и вполне смогут справиться с сыростью в небольших помещениях.
- Вытяжка. В непроветриваемых комнатах (к примеру, в ванной) непременно следует устанавливать качественные вытяжки. Кроме того, вентиляционными системами должны быть оборудованы металлопластиковые окна.
Избавиться от избыточной влажности также поможет ежедневное проветривание помещения — аэрация минимизирует содержание водяного пара и помогает отрегулировать микроклимат.
Оптимальный уровень влаги в квартире — это залог здоровья её жителей, поэтому следует выяснить, какая влажность должна быть в комнатах и добиваться поддержания нормальных показателей.
Альтернативный метод измерений влажности в промышленности
Очевидно, что при описанном выше подходе психрометрический метод измерения превращается в достаточно сложную измерительную систему, реализация которой является нетривиальной задачей. В свою очередь, упрощенный метод без учета указанных выше особенностей зачастую не обеспечивает требуемую точность или вообще не может применяться. По этой причине намного более распространенным в промышленности методом измерения относительной влажности является емкостной метод, который, в отличие от психрометрического, является прямым методом измерения относительной влажности воздуха
. В основе метода лежит влагозависимый конденсатор (см. рисунок 6).
Рисунок 6 — Схематичное изображение чувствительного элемента
Он представляет собой керамическую подложку, в которую вмонтированы электроды (обкладки), а сверху нанесен очень тонкий полимерный слой (диэлектрик), абсорбирующий молекулы воды из окружающего воздуха. Для понимания принципа измерения, обратимся к формуле 4 для расчета емкости плоского конденсатора:
C = ε ε 0 S d C= %varepsilon %varepsilon _0 {S} over {d}
где: Ɛ0
— электрическая постоянная 8,85*10-12 Ф/м;
S
– площадь обкладок конденсатора, м2;
d
– расстояние между обкладками, м;
Ɛ
— относительная диэлектрическая проницаемость среды.
Все величины в формуле 4 являются константами, кроме диэлектрической проницаемости Ɛ — она прямопропорционально увеличивается вместе с увеличением степени насыщенности воздуха. Соответственно, чем выше относительная влажность воздуха, тем больше емкость влагозависимого конденсатора (сенсора). А дальше электронная плата датчика преобразует текущую емкость сенсора в аналоговый унифицированный сигнал 4…20 мА или 0…10 В, либо в цифровой сигнал по интерфейсу RS485 или RS232.
На основе данного метода измерений работают промышленные датчики влажности Galltec-Mela, в основе которых лежат уникальные сенсоры собственного производства, которые не боятся образования конденсата на своей поверхности, в отличии от сенсоров некоторых других производителей. Датчики имеют следующие преимущества:
- высокая точность измерения — самый простой датчик серии L имеет основную допустимую погрешность измерения 3%. Также в ассортименте Galltec-Mela есть датчики серии А/В, выполненные на базе микроконтроллера, которые имеют допустимую погрешность всего 1,5% и являются средствами измерения утвержденного типа;
- возможность долговременной работы при температурах -80…+200 °С;
- простота защиты от запыленности и агрессивных сред в разных технологиях за счет применения фильтров для датчиков влажности
- высокая стабильность, не зависящая от температуры или давления окружающего воздуха.
Особенности измерения относительной влажности в зимний период
Рассмотрим пример пересчета относительной влажности воздуха в зимний период на улице и в отапливаемом помещении. Воспользуемся для этого калькулятором, представленным на нашем сайте www.eksis.ru.
1. В области исходных условий задаем параметры, соответствующие зимнему периоду. Например:
— температура: −15°С;
— относительная влажность воздуха: 75%;
— давление, предположи: 1 атм.
2. В области заданий условий пересчета введем параметры воздуха, соответствующие отапливаемому помещению. Например:
— температура: +25°С;
— давление: 1 атм.
В столбце получаемых результатов пересчета мы видим, что относительная влажность воздуха в отапливаемом помещении будет соответствовать 4,53%. Также можем видеть результаты пересчета других параметров.
Влажность 4, 53% неприемлема для помещений, в которых работают люди или хранятся какие-либо предметы, продукты и т. п. Поэтому для поддержания необходимого уровня влажности часто устанавливают системы принудительного увлажнения воздуха, которые,к сожалению, не всегда эффективны. Определим, какое количество влаги необходимо испарить в помещении с температурой 20°С при температуре воздуха на улице −15°С и относительной влажности 75%, чтобы поддерживать в нем относительную влажность на уровне 55% при кратности воздухообмена 4 (промышленное помещение с приточно-вытяжной вентиляцией). Габариты помещения 4х6х2,5 м. В качестве примера рассчитывается влажность в помещении для хранения бумажных документов (температура воздуха должна равняться 18±2°С, относительная влажность — 55±5%).
1. При помощи калькулятора определяем, что в 1 м3 воздуха при температуре −15°С и относительной влажности 75% содержится 1,2 г воды (на улице).
2. При помощи калькулятора определяем, что в 1 м3 воздуха при температуре +18°С и относительной влажности 55% содержится 8,5 г воды (в помещении).
3. Найдем количество влаги, которое необходимо добавить в 1 м3 воздуха, на улице нагретого до +18° C, чтобы его относительная влажность равнялась 55%:
M = A (55%) — A (75%) = 8,5 – 1,2 = 7,3 г.
4. Найдем объем помещения:
V = 4 x 6 x 2,5 = 60 м3
5. Определим общее количество влаги М:
М = мV = 7,3 х 60 = 438 г.
6. Определим количество влаги, которое необходимо испарить в помещении за час при кратности воздухообмена равном 4:
М4 = М х 4 = 438 х 4 = 1752 г.
В сутки количество влаги должно составлять 24 х 1752 = 42 048 г.
Таким образом, для поддержания в помещении, оборудованном приточно-вытяжной вентиляцией относительной влажности 50% в зимний период, необходимо испарять в сутки около 42 литров воды!
Обращаем Ваше внимание, что при проведении расчетов не учитывается тот факт, что различные материалы (книги и другие изделия из бумаги, деревянная мебель и многое другое), находящиеся в помещении, поглощают значительное количество влаги из воздуха.
Летом, когда разница между температурой на улице и в помещении обычно не очень велика, влажность в помещении может быть достаточно высокой. Однако при этом также необходимо учитывать разность температур между улицей и помещением. Часто может наблюдаться ситуация, когда помещение с солнечной стороны прогревается до +30 градусов и выше, а на улице температура +17…+18°С, или противоположная ситуация, когда на улице на солнце температура может достигать +35°С, а в полуподвальном помещении прохладно (те же +18°С) и при этом, естественно, более влажно, чем на улице.
Следует также помнить, что любой прибор (и в том числе ИВТМ-7) измеряет влажность непосредственно в месте расположения измерительного зонда. В то же время, даже в небольшом по размерам помещении влажность в различных точках может существенно отличаться (до 20 — 30%). Это происходит из-за уже упомянутых локальных источников влаги (или её поглотителей) и существованияслабых конвекционных потоков (сквозняки и т. п.).
Сравним данные, полученные расчетным путем, с показаниями термогигрометров серии ИВТМ-7 за период с 01.12.2008 по 31.01.2009г.
1. Место проведения измерений: офис АО «ЭКСИС» и территория, прилегающая к зданию ОАО «Технопарк-Зеленоград».
2. Регистрируемые параметры:
— относительная влажность (%);
— температура (°С).
3. Используемые контрольно-измерительные приборы:
Сетевой восьмиканальный термогигрометр ИВТМ-7/8РМК-16А производит измерения температуры и относительной влажности воздухав офисе и на улице.
Использование стационарного прибора позволяет проводить измерения в удаленных местах (до 1000 метров) без ухудшения метрологических характеристик. Результаты измерений выводятся на индикаторе измерительного блока прибора, который располагается на пункте контроля.
Регистрация данных производится в автоматическом режиме с помощью программы NCServer.
Для измерения параметров микроклимата в производственных помещениях и офисе используются преобразователи ИПВТ-03-01 («минимикрофон»).
Для измерения параметров микроклимата на улице используется преобразователь ИПВТ-03-14 (класс защиты IP54).
Размещая преобразователь на улице, наши специалисты позаботились о его защите от влияния прямых солнечных лучей, осадков и других неблагоприятных факторов, влияющих на чувствительный элемент. Преобразователь помещен в специальный защитный экран.
Приборы серии ИВТМ-7 внесены в Государственный реестр средств измерений РФ под № 15500-12 и проходят периодическую ежегодную поверку.
4. Запись параметров микроклимата производится непрерывно с 2008 года.
5. Принцип действия термогигрометров серии ИВТМ-7.
Измерение относительной влажности производится с помощью сорбционно-емкостного сенсора. Принцип работы чувствительного элемента относительной влажности основан на зависимости диэлектрической проницаемости влагочувствительного слоя от влажности окружающей среды. В качестве влагочувствительного слоя использован полимерный материал. Для измерения температуры используется платиновый термометр сопротивления, выполненный по пленочной технологии. Кроме основной функции – измерения температуры, платиновый термометр задействован в системе компенсации изменений показаний влажности при различных температурах.
Чувствительные элементы относительной влажности и температуры установлены на конце зонда и закрыты металлическим или фторопластовым колпачком, обеспечивающим защиту их от механических повреждений и свободный доступ анализируемой среды.
6. Результаты измерений и их интерпретация.
На графике 1 представлены результаты изменений относительной влажности и температуры на улице рядом со зданием ОАО “Технопарк-Зеленоград” в зимний период (декабрь- январь).
График 1
Как мы видим, на графике 1 относительная влажность воздуха на улице в декабре-январе колебалась в диапазоне от 80 до 100% (с несколькими минимальными значениями до 60%), а температура – от −20 до +10°С.
Используя программу пересчета влажности, рассчитаем значения относительной влажности и температуры в помещении.
В области исходных условий задаем средние значения параметров за указанный период:
— температура: — 5°С;
— относительная влажность воздуха: 95%;
— давление, предположим: 1 атм.
В области заданий условий пересчета введем параметры воздуха, соответствующие отапливаемому помещению:
— температура: +25°С;
— давление: 1 атм.
В столбце получаемых результатов пересчета мы видим, что относительная влажность воздуха в отапливаемом помещении будет соответствовать 12,64%. Также можем видеть результаты пересчета других параметров.
Сравним полученные данные с результатами изменений относительной влажности и температуры прибором ИВТМ-7/8Р-МК-16А в помещении АО «ЭКСИС» в зимний период (декабрь-январь).
График 2
На графике 2 влажность воздуха в офисе менялась в диапазоне от 10 до 32% с несколькими максимальными пиками, которые связаны с проведением влажной уборки в помещениях.
Период зимних каникул с 1 по 11 января характеризуется снижением температуры в офисе с +28/+30 до +18°С, а влажности с 16 до 11%.
Средние значения параметров за два месяца:
Относительная влажность: 21,3%
Температура: 24,9°С
Вывод: как мы видим, фактические значения относительной влажности превышают рассчитанные при помощи специализированной программы. Это можно объяснить наличием в помещениях зеленых растений, которые регулярно поливаются; существенным количеством сотрудников, выдыхающих влажный воздух; еженедельным проведением влажной уборки и рядом других факторов.Но в целом, значения относительной влажности 21,3% не соответствуют значениям, указанным в нормативных документах:
1. СанПиН 2.2.4.548–96. Гигиенические требования к микроклимату производственных помещений.
2. ГОСТ. ССБТ. 12.1.005–88. Общие санитарно-гигиенические требования к воздуху рабочей зоны.
Таблица 1. Оптимальные нормы температуры, относительной влажности и скорости движения воздуха в жилых, общественных, административных помещениях.
Показатели | Период года | |
теплый | холодный и переходный | |
Температура, °С | 23—25 | 20—22 |
Относительная влажность, % | 60—30 | 45—30 |
Скорость движения воздуха, м/с | Не более 0,25 | Не более 0,1—0,15 |
Для оптимизации рабочих условий в помещениях желательно установить системы принудительного увлажнения.