Важность воздухообмена
В зависимости от размеров помещения скорость воздухообмена должна быть разной
Задача любой вентиляции – обеспечить оптимальный микроклимат, уровень влажности и температуру воздуха в помещении. Эти показатели влияют на комфортное самочувствие человека во время рабочего процесса и отдыха.
Некачественная вентиляция приводит к размножению бактерий, вызывающих инфекции дыхательных путей. Продукты питания начинают быстро портиться. Повышенный уровень влажности провоцирует появление грибка и плесени на стенах и предметах мебели.
Свежий воздух может поступать в помещение естественным способом, но добиться соблюдения всех санитарно-гигиенических показателей можно только при работе качественной системы вентиляции. Она должна быть рассчитана для каждого помещения отдельно, учитывая состав и объем воздуха, конструктивные особенности.
Для небольших частных домов и квартир достаточно оборудовать шахты с естественной циркуляцией воздушных потоков. Но для промышленных помещений, больших домов требуется дополнительное оборудование в виде вентиляторов, которые обеспечивают принудительную циркуляцию.
При планировке здания предприятия или общественного учреждения необходимо принимать во внимание следующие факторы:
- качественная вентиляция должна быть в каждом помещении;
- необходимо, чтобы состав воздуха соответствовал всем утвержденным нормам;
- на предприятия требуется установка дополнительного оборудования, которое будет регулировать скорость воздуха в воздуховоде;
- для кухни и спальни необходимо монтировать разные типы вентиляции.
Чтобы система воздухообмена соответствовала всем требованиям, нужно произвести расчет скорости воздуха в воздуховоде. Это поможет правильно подобрать прибор.
Определение скорости движения воздуха
Скорость движения воздуха определяется анемометром марки АСО-3, позволяющим измерить скорость движения воздуха в пределах 0,3..5,0 м/с или шаровым кататермометром для измерения малых скоростей движения воздуха.
Крыльчатый анемометр (рис. 3) действует по принципу воздействия напора воздуха на крыльчатку анемометра 1; при этом, перед измерением выключают арретир 7 и записывают начальное положение счетчика (по всем шкалам 4, 5, 6) – К1; устанавливают прибор в воздушный поток и добиваются наибольшего вращения крыльчатки 1; через 10…15 сек, включают арретир 7 и секундомер на время t опыта (50…100 сек); по истечению времени опыта арретир 7 отключают и записывают показания счетчика – K2.
После этого определяют число делений (n ) в единицу времени по формуле:
,
Рис. 3. Крыльчатый анемометр АСО-3:
1 – крыльчатка; 2 – ручка; 3 – стрелка шкалы единиц; 4 – шкала единиц; 5 – шкалы тысяч; 6 – шкалы сотен; 7 – арретир
и с помощью тарировочного графика (прил. 3) определяют скорость движения воздуха.
Малые скорости движения воздуха определяют также кататермометром (рис.4). Перед измерениями нижний резервуар прибора нагревают в горячей воде с температурой 60…70 °С до тех пор пока не заполнится две трети его верхнего резервуара. Затем вытирают нижний резервуар досуха, подвешивают кататермометр в точке исследования и по секундомеру регистрируют время охлаждения прибора с 38 до 35 °С. После этого находят охлаждающую силу воздуха (Н), выражаемую в милликалориях в секунду по формуле:
,
где F – фактор прибора, обозначаемый на его корпусе; τ – время охлаждения прибора с 38 °С до 35 °С,сек.
Рис 4. Шаровой кататермометр:
1 – нижний резервуар; 2 – шкала прибора; 3 – верхний резервуар.
Затем вычисляют разницу между средней температурой кататермометра 36 °С и температурой воздуха Q и находят отношение Н/Q. Скорость движения воздуха определяют с помощью таблицы (прил. 4). Этот прибор не рекомендуется применять при температуре воздуха более 29 °С и при наличии теплового излучения вблизи охлажденных поверхностей.
Измерять температуру воздуха можно с помощью либо обычного ртутного термометра, либо сухого термометра-психрометра.
При исследовании метеорологических условий необходимо:
а) замеры проводить в рабочей зоне и различных точках помещения (рабочей площадки) на уровне 1 м от пола – при работах сидя и на уровне 1,5 м – при работах стоя;
б) замеры проводить в разное время дня (начало, середина и конец рабочей смены) и в разное время года;
в) измерения выполнять как на постоянных, так и на непостоянных рабочих местах при их минимальном и максимальном удалении от источников локального тепловыделения, влаговыделения, охлаждения (нагретое оборудование, окна, двери, ворота, открытые емкости с жидкостью и т.п.);
г) в момент измерения отмечать особенности технологического процесса, состояние рабочего помещения и вентиляции.
Контрольные вопросы;
1. Что называется относительной влажностью?
2. Какие факторы влияют на микроклимат рабочих помещений?
3. Что называется эффективной температурой?
4. Что называется эквивалентно-эффективной температурой?
5. Зона и линия комфорта. Сущность этих понятий.
6. Какое влияние на самочувствие человека оказывает скорость движения воздуха;
7. Каковы оптимальные параметры микроклимата в рабочем помещении, от чего они зависят?
8. Объясните принцип работы психрометра и анемометра.
Приложение 1
Классификация работ по тяжести
1. Легкие 1 – расход энергии до 150 ккал/ч (174 Вт). Легкие работы подразделяются на 2 категории: 1а и 1б.
Работы категории 1а – выполняемые сидя, с незначительным физическим напряжением (сфера управления, работа с приборами).
Работы категории 1б – выполняемые сидя, стоя или связанные с ходьбой с небольшим физическим напряжением.
2. Средней тяжести 2 – расход энергии 151…250 ккал/ч (175…290 Вт). Работы средней тяжести подразделяются на 2 категории: 2а и 2б.
Работы категории 2а – выполняемые при постоянной ходьбе, перемещении мелких до 1 кг изделий в положении стоя или сидя (профессии в механосборочных цехах и др.).
Работы категории 2б – выполняемые при ходьбе с перемещением и переноской тяжестей до 10 кг (профессии трактористов, комбайнеров, водителей и др.).
3. Тяжелые 3 – расход энергии более 250 ккал/ч (более 290 Вт). Тяжелые работы характеризуются постоянным перемещением, переноской грузов свыше 10 кг и требующих больших физических усилий.
Приложение 2
Рис. 1. Психрометрический график
Приложение 3
Рис. 2. Тарировочные графики (по крыльчатому анемометру):
а) для измерения скорости воздуха до 1,0 м/с; б) для измерения скорости воздуха до 5,0 м/с.
Приложение 4
Таблица 1
Таблица для определения скорости движения воздуха
по шаровому кататермометру
Отношение Н/Q | Скорость движения воздуха, м/с | Отношение Н/Q | Скорость движения воздуха, м/с |
0,33 | 0,05 | 0,59 | 0,97 |
0,34 | 0,06 | 0,60 | 1.00 |
0,35 | 0,08 | 0,61 | 1,03 |
0,36 | 0,09 | 0.62 | 1,07 |
0,37 | 0,11 | 0,63 | 1.11 |
0,38 | 0,12 | 0,64 | 1,15 |
0,39 | 0,14 | 0,65 | 1,19 |
0,40 | 0,16 | 0,66 | 1,22 |
0,41 | 0,18 | 0,67 | 1,27 |
0,42 | 0,20 | 0,68 | 1,31 |
0,43 | 0.22 | 0.69 | 1,35 |
0,44 | 0,25 | 0,70 | 1,39 |
0,45 | 0.27 | 0.71 | 1,43 |
0,46 | 0.30 | 0,72 | 1,48 |
0,47 | 0,33 | 0,73 | 1,52 |
0,48 | 0,36 | 0.74 | 1,57 |
0,49 | 0,40 | 0,75 | 1,60 |
0,50 | 0,44 | 0.76 | 1,65 |
0,51 | 0,48 | 0.77 | 1,70 |
0,52 | 0,52 | 0,78 | 1,75 |
0.53 | 0,57 | 0.79 | 1,79 |
0,54 | 0,62 | 0,80 | 1,84 |
0,55 | 0,68 | 0,81 | 1.89 |
0,56 | 0,73 | 0.82 | 1,94 |
0,57 | 0,80 | 0,83 | 1,98 |
0,58 | 0,88 | 0,84 | 2,03 |
Правила определения скорости воздуха в воздуховоде
При увеличении диаметра труб скорость воздуха снижается и давление падает
Скорость потока воздуха в вентиляции напрямую связана с уровнем вибрации и шума в системе. Эти показатели необходимо учитывать при поведении вычисления. Движение массы воздуха создает шум, интенсивность которого зависит от количества изгибов труб. Большую роль играет и сопротивление: чем оно будет выше, тем ниже будет скорость движения воздушных масс.
Нормы уровня шума
На основании санитарных норм в помещениях устанавливаются максимально возможные показатели звукового давления.
Превышение перечисленных параметров возможно только в исключительных случаях, когда нужно подсоединить к системе дополнительное оборудование.
Уровень вибрации
Уровень шума и вибраций зависит от внутренней поверхности трубы
Во время работы любого вентиляционного устройства производится вибрация. Ее показатели зависят от материала, из которого изготовлен воздуховод.
Максимальная вибрация зависит от нескольких показателей:
- качества прокладок, которые предназначены для снижения уровня вибрации;
- материала изготовления труб;
- размера воздуховода;
- скорости воздушного потока.
Общие показатели не могут быть выше установленных санитарными нормами.
Кратность воздухообмена
Очистка воздушных масс происходит за счет воздухообмена, он разделяется на принудительный и естественный. Во втором случае он достигается при помощи открывания окон, форточек, в первом через установку вентиляторов и кондиционеров.
Для оптимального микроклимата смена воздуха должна происходить не реже раза в час. Количество таких циклов носит название кратность воздухообмена. Ее необходимо определить, чтобы установить скорость движения воздуха в вентиляционном канале.
Расчет кратности производится по формуле N=V/W, где N – кратность в час; V – объем воздуха, который заполняет за час кубический метр помещения; W – объем помещения в кубических метрах.
Правила вычислений
Шум и вибрация находятся в тесной взаимосвязи со скоростью воздушных масс в вентиляционном канале. Ведь поток, который проходит по трубам, способен создавать переменное давление, способное превышать нормальные параметры, если количество поворотов и изгибов больше оптимальных значений. Когда сопротивление в каналах большое, скорость воздуха существенно меньше, а экономичность вентиляторов выше.
Многие факторы влияют на порог вибрации, например – материал трубы
Стандартные нормы уровня шумов
В СНиПе указываются определенные нормативы, которые затрагивают помещения жилого, общественного или производственного типа. Все стандарты указываются в таблицах. Если принятые нормы увеличены, значит, вентиляционная система спроектирована не должным образом. Кроме этого, превышение нормы звукового давления допустимо, но лишь на короткое время.
Насколько эффективно будут работать вентиляторы, зависит от уровня вибрации. Размер воздуховода, качество прокладок, материал, из которого изготовлены трубы, — все это влияет на порог вибрации.
Если предельно допустимые значения превышены, значит, система каналов создана с какими-либо недочетами, которые в ближайшем времени должны быть исправлены. Мощность вентилятора также способна влиять на превышение показателей уровня вибрации. Максимальная скорость воздуха в воздуховоде не должна способствовать росту шумов.
Принципы оценки
Для изготовления вентиляционных труб применяют разные материалы, самыми распространенными из которых считаются пластиковые и металлические трубы. Формы воздуховодов имеют различные сечения, начиная от круглых и прямоугольных и заканчивая эллипсоидными. СНиП может указывать только размеры вытяжных труб, но никак не нормировать объем воздушных масс, поскольку вид и назначение помещений могут значительно отличаться. Прописанные нормы предназначены для социальных объектов — школ, дошкольных учреждений, больниц и т.д.
Все габариты вычисляются благодаря определенным формулам. Нет определенных правил, позволяющих вычислять скорость воздуха в воздуховодах, но существуют рекомендуемые стандарты для необходимого расчета, которые можно увидеть в СНиПах. Все данные используются в виде таблиц.
Дополнять приведенные данные можно таким способом: если вытяжка естественная, то скорость движения воздуха не должна превышать 2 м/с и быть меньше 0,2 м/с, иначе обновляться воздушные потоки в комнате будут плохо. Если же вентиляция принудительная, то максимально допустимое значение составляет 8-11 м/с для магистральных воздуховодов. Если этот стандарт будет выше, то давление в вентиляции получится очень большим, что приведет к неприемлемой вибрации и шуму.
Алгоритм и формулы вычисления скорости воздуха
Вариант расчета скорости воздуха в трубах разного диаметра
Расчет расхода воздуха можно сделать самостоятельно, учитывая условия и технические параметры. Для подсчета нужно знать объем помещения и норму кратности. Например, для комнаты 20 квадратных метров минимальное значение – 6. Использование формулы дает 120 м³. Это объем, который в течение часа должен перемещаться через каналы.
Скорость в воздуховоде рассчитывается и на основе параметров диаметра сечения. Для этого используется формула S=πr²=π/4*D², где
- S – площадь сечения;
- r – радиус;
- π – константа 3,14;
- D – диаметр.
Как только будет известная площадь сечения и расход воздуха, можно вычислить его скорость. Для этого используется формула V=L/3600*S, где:
- V – скорость м/с;
- L – расход м³/ч;
- S – площадь сечения.
От скорости в сечении воздуховода зависят параметры шума и вибрации. Если они превышают допустимые нормативы, нужно снижать скорость, увеличивая сечение. Для этого можно установить трубы из другого материала или сделать изогнутый канал прямым.
Вычисление расхода воздуха
Важно правильно вычислить площадь сечений любых форм, как круглых, так и прямоугольных. Если размер будет неподходящим, обеспечить нужный баланс воздуха будет невозможно. Слишком большой воздухопровод займет много места. Это уменьшит площадь в помещении, доставит дискомфорт жильцам. При неправильном расчете и выборе очень маленького размера канала будут наблюдаться сильные сквозняки. Это происходит из-за сильного увеличения давления воздушного потока.
Расчет по сечению
При переходе круглого воздуховода в квадратный скорость будет меняться
Чтобы посчитать, с какой скоростью будет проходить воздух по трубе, нужно определить площадь сечения. Для расчета используется следующая формула S=L/3600*V, где:
- S – площадь сечения;
- L – расход воздуха в кубических метрах на час;
- V – скорость в метрах в секунду.
Для круглых воздуховодов необходимо определить диаметр по формуле: D = 1000*√(4*S/π).
Если воздуховод будет прямоугольным, а не круглым, вместо диаметра нужно определить его длину и ширину. При установке такого воздуховода в расчет берут примерное сечение. Оно рассчитывается по формуле: a*b=S, (a – длина, b – ширина).
Существуют утвержденные нормативы, по которым соотношение ширины и длины не должно превышать показатель 1:3. Также рекомендуется использовать в работе таблицы с типовыми размерами, которые предлагают производители воздуховодов.
У круглых воздуховодов есть преимущество. Они характеризуются меньшим уровнем сопротивления, поэтому при работе вентиляционной системы будут максимально снижены уровень шума и вибрации.
Алгоритм выполнения расчетов
При проектировании, настройке или модификации уже действующей вентиляционной системы обязательно выполняются расчеты воздуховода. Это необходимо для того, чтобы правильно определить его параметры с учетом оптимальных характеристик производительности и шума в актуальных условиях.
При выполнении расчетов большое значение имеют результаты замеров расхода и скорости движения воздуха в воздушном канале.
Расход воздуха – объем воздушной массы, поступающий в систему вентиляции за единицу времени. Как правило, этот показатель измеряется в м³/ч.
Скорость движения – величина, которая показывает, насколько быстро воздух перемещается в системе вентиляции. Этот показатель измеряется в м/с.
Если известны эти два показателя, можно рассчитать площадь круглых и прямоугольных сечений, а также давление, необходимое для преодоления локального сопротивления или трения.
Составляя схему, нужно выбрать угол зрения с того фасада здания, который расположен в нижней части планировки. Воздуховоды отображаются сплошными толстыми линиями
Чаще всего используется следующий алгоритм проведения вычислений:
- Составление аксонометрической схемы, в которой перечисляются все элементы.
- На базе этой схемы рассчитывается длина каждого канала.
- Измеряется расход воздуха.
- Определяется скорость потока и давление на каждом участке системы.
- Выполняется расчет потерь на трение.
- С использованием нужного коэффициента выполняется расчет потерь давления при преодолении локального сопротивления.
При выполнении расчетов на каждом участке сети воздухораспределения получаются разные результаты. Все данные нужно уравнять посредством диафрагм с веткой наибольшего сопротивления.
Вычисление площади сечения и диаметра
Правильный расчет площади круглых и прямоугольных сечений очень важен. Неподходящий размер сечения не позволит обеспечить нужный воздушный баланс.
Слишком большой воздуховод займет много места и уменьшит эффективную площадь помещения. Если выбрать слишком маленький размер каналов, будут появляться сквозняки, так как увеличится давление потока.
Для того, чтобы рассчитать необходимую площадь сечения (S), нужно знать значения расхода и скорости движения воздуха.
Для вычислений используется следующая формула:
S = L/3600*V,
при этом L – расход воздуха (м³/ч), а V – его скорость (м/с);
Используя следующую формулу, можно посчитать диаметр воздуховода (D):
D = 1000*√(4*S/π), где
S – площадь сечения (м²);
π – 3,14.
Если планируется установка прямоугольных, а не круглых воздуховодов, вместо диаметра определяют необходимую длину/ширину воздушного канала.
Все полученные значения сопоставляют со стандартами ГОСТ и выбирают изделия, наиболее близкие по диаметру или площади сечения
При выборе такого воздуховода в расчет берется примерное сечение. Используется принцип a*b ≈ S, где a – длина, b – ширина, а S – площадь сечения.
Согласно нормативам, соотношение ширины и длины не должно быть выше 1:3. Также следует пользоваться таблицей типовых размеров, предоставляемой заводом-изготовителем.
Чаще всего встречаются такие размеры прямоугольных каналов: минимальные габариты – 0,1 м х 0,15 м, максимальные – 2 м х 2 м. Преимущество круглых воздуховодов в том, что они отличаются меньшим сопротивлением и, соответственно, создают меньше шума при работе.
Расчет потери давления на сопротивление
По мере продвижения воздуха по магистрали создается сопротивление. Для его преодоления вентилятор приточной установки создает давление, которое измеряют в Паскалях (Па).
Потерю давления можно снизить, увеличив сечение воздуховода. При этом может быть обеспечена примерно одинаковая скорость потока в сети
Для того, чтобы подобрать подходящую приточную установку с вентилятором нужной производительности, необходимо рассчитать потерю давления на преодоление локального сопротивления.
Применяется эта формула:
P=R*L+Ei*V2*Y/2, где
R – удельная потеря давления на трение на определенном участке воздуховода;
L – длина участка (м);
Еi – суммарный коэффициент локальной потери;
V – скорость воздуха (м/с);
Y – плотность воздуха (кг/м3).
Значения R определяются по нормативам. Также этот показатель можно рассчитать.
Если сечение воздуховода круглое, потери давления на трение (R) рассчитываются следующим образом:
R = (X*D/В) * (V*V*Y)/2g, где
X – коэфф. сопротивления трения;
L – длина (м);
D – диаметр (м);
V – скорость воздуха (м/с), а Y – его плотность (кг/ м³);
g – 9,8 м/с².
Если же сечение не круглое, а прямоугольное, в формулу необходимо подставить альтернативный диаметр, равный D = 2АВ/(А + В), где А и В – стороны.
Материал и форма сечения воздуховодов
Круглые воздуховоды чаще всего используются на больших предприятиях. Это связано с тем, что для их установки требуется много квадратных метров площади помещения. Для жилых домов больше всего подходят прямоугольные сечения, их используются также в поликлиниках, детских садах.
Чаще всего для изготовления труб используется сталь. Для круглого сечения она должна быть упругая и твердая, для прямоугольных более мягкая. Трубы могут быть из текстильных и полимерных материалов.
Правильный выбор вентиляционных труб
Расчет воздуховода делается с учетом размеров помещения
Перед проектированием вентиляционной системы нужно принимать во внимание все показатели скорости, шума и вибрации. Необходимо делать расчеты с учетом площади помещения, чтобы обеспечить качественный воздухообмен. Большую роль в выборе также играет материал изготовления.
Наиболее универсальными считаются воздуховоды их оцинкованной стали. Они могут эксплуатироваться при высоких показателях температуры и давления. Их можно использовать для любых климатических зон.
В промышленности чаще всего используются воздуховоды из черной стали. Они жаро- и огнестойкие, но подвержены сильной коррозии.
Высокой степенью гибкости, прочности и эластичности обладает алюминиевый гофрированный воздуховод. Материал устойчив к высоким температурам. Но у такого воздуховода есть недостаток. Из-за высокого аэродинамического сопротивления возникает сильный шум во время работы.
Высокой прочностью, длительным сроком эксплуатации и легкостью монтажа отличаются пластиковые воздуховоды. Они популярны за счет низкой стоимости и небольшого веса. Минусом является низкая стойкость к высоким температурам.
В жилых домах часто устанавливаются трубы из полиизоцианурата. Они характеризуются высокими свойствами пожаробезопасности, длительным сроком эксплуатации, легкости монтажа.