Регулировка системы отопления многоквартирного дома


Система автоматического регулирования тепла (САРТ)

ООО «ТелеСистемы» предлагает внедрение системы автоматического регулирования теплопотребления (САРТ) с целью обеспечения рационального использования тепловой энергии и создания комфортных условий для проживания и работы.

Каждый из нас не раз замечал, что в периоды потепления батареи в здании еще долго остаются такими же горячими, как в холода. К сожалению, централизованная система отопления в нашей стране характеризуется инерционностью: коррекция температуры теплоносителя на источнике теплоты производится с заметным отставанием. Более того, централизованная система всегда ориентирована на среднего потребителя, в результате чего в зданиях, расположенных ближе к источнику теплоты, всегда наблюдаются завышенные параметры теплоносителя. Стремясь обеспечить себе комфортные условия для проживания и работы, мы открываем форточки, и тепло, за которое мы платим, уходит на улицу. А следовательно, здесь и кроется источник экономии энергоресурсов.

Сэкономить на теплопотреблении можно установив в индивидуальном теплопункте здания систему автоматического регулирования температуры теплоносителя (САРТ). Она предназначена для регулирования теплопотребления путем увеличения или уменьшения потока теплоносителя в здание в зависимости от его реальных потребностей в данный момент.

Автоматизация процесса регулирования подачи тепла МКД

Существующая система транспортировки и распределения тепловой энергии далека от идеала. Особенно остро ее несовершенство ощущается в периоды межсезонья. Часто бывает – за окном стабильно теплая погода, батареи упорно греют и без того теплые помещения. Подобная ситуация обусловлена тем, что единственным звеном в цепи предприятий, коммуникаций и устройств подачи теплоносителя, имеющее возможность повлиять на процесс подачи тепла, является котельная или ТЭЦ. Но даже у них нет возможности гибкого регулирования, они не имеют механизмов, позволяющих моментально реагировать на перемену погоды.

Идеальным вариантом регулирования подачи тепла в многоквартирном доме будет такой проект, при реализации которого появляется возможность регулирования температуры каждой комнаты отдельно. Такое решение позволяет обеспечить индивидуальный учет подачи тепла, что в свою очередь дает возможность жильцам не платить за тепло, попросту вылетающее через открытые форточки.

Индивидуальный учет подачи тепла позволяет потребителю самому осуществлять регулирование количества потребляемой тепловой энергии. Этого можно достичь, устанавливая меньшую температуру помещений, которые не используются, поднимать ее по мере необходимости.

Регулирование подачи тепла можно реализовать, перекрывая краны на радиаторах. Кроме того можно доверить процесс регулирования автоматике. Современная промышленность предлагает различные устройства позволяющие регулировать температуру помещения. Самые распространенные из них – радиаторные терморегуляторы. Это устройства, состоящие из термостатической головки и клапана. Датчик измеряет температуру помещения, управляет клапаном. В зависимости от предварительных настроек клапан увеличивает или уменьшает подачу теплоносителя, регулируя уровень нагрева.

Благодаря возможности точной настройки, данное устройство позволяет регулировать микроклимат внутри здания, поддерживать комфортную атмосферу, экономить энергию. Существуют различные виды радиаторных терморегуляторов. Большая их часть позволяет установить значение температуры, которое желает получить владелец помещения. Существуют более сложные модели. Некоторые из них позволяют устанавливать температуру для разного времени суток, к примеру, они могут ограничить подачу тепла днем, когда в квартире никого нет, а ближе к вечеру согреть помещение до комфортного уровня.

Основные задачи САРТ:

  1. Устранение подачи на объект теплоносителя с завышенными («перетопы») и с заниженными параметрами, при этом регулирование параметров теплоносителя в зависимости от температуры наружного воздуха происходит с минимальной инерцией -САРТ выполняет коррекцию мгновенно.
  2. Регулирование температуры теплоносителя в обратном трубопроводе теплосети для исключения применения штрафных санкций со стороны энергоснабжающих организаций за превышение данной температуры. САРТ позволяет ограничить забор теплоносителя из сети и запустить его из обратного трубопровода повторно в систему отопления. И так до тех пор, пока его температура не достигнет нормы.
  3. Экономия тепловой энергии за счет понижения температуры теплоносителя в ночные часы, а также в выходные и праздничные дни. Например, если цех работает в три смены без выходных, то данный режим не применим, если же в ночные часы и в выходные (праздничные) дни персонал в цехе отсутствует, то есть возможность снижать температуру теплоносителя на это время.
  4. Поддержание заданного температурного режима в здании по датчикам, размещенным в контрольных помещениях. Это не даст экономии, но обеспечит комфортные условия для проживания и работы. Сложность заключается в подборе контрольного помещения для установки датчика с учетом того, что температура в нем будет влиять на климат во всем здании. Используется, как правило, для объектов с четко определенным контрольным помещением, где необходимо обеспечить наибольший комфорт с непостоянным расписанием: кинотеатры, бассейны и т.д.

Также в системе, разработанной нашими специалистами, предусматривается техническая возможность выдачи сигналов в единый диспетчерский центр о выходе регулируемых параметров за пределы регулирования. Это значительно повышает ее надежность и минимизирует вероятность отказа системы и оборудования.

Выгода от внедрения САРТ

Стоимость создания САРТ (проектирование, монтаж и сдача в ЭСО) специалистами ООО «ТелеСистемы» согласно прайс-листу – от 250 тысяч рублей.

Рассчитанные нами усредненные величины возможной экономии потребления тепловой энергии с помощью применения всех алгоритмов модуля САРТ:

    применение погодного регулирования

16%, применение регулирования по расписанию

Итого: суммарная экономия составляет около 38%.

Помимо экономии и комфортных условий проживания внедрение САРТ обеспечивает балансировку системы отопления, увеличивает срок эксплуатации оборудования системы теплоснабжения, повышает привлекательность дома и обеспечивает исполнение требований законодательства по энергосбережению.

Состав системы регулирования

САРТ представляет собой систему из датчиков температуры, регулирующего клапана, насосов, контроллера и аппаратуры связи (в случае, если требуется дистанционное управление системой).С помощью устанавливаемых датчиков анализируется температура снаружи и внутри дома, а также температура в подающем и обратном трубопроводе. Эти данные передаются в контроллер шкафа управления. Контроллер анализирует показания датчиков и выдает команду на регулирующий клапан в соответствии с заданным графиком.

Блок управления позволяет:

  • задавать температурный режим управления для каждого дня недели с учетом рабочего и нерабочего времени;
  • автоматически поддерживать заданный режим регулирования подачи теплоносителя;
  • корректировать температурный режим и календарь при переносе рабочих и выходных дней;
  • задавать программно конфигурацию системы регулирования тепла из набора типовых схем.
  • графики подающей магистрали объекта;
  • графики обратной магистрали объекта;
  • часовые графики режима работы регулятора;
  • нормируемая температура помещения;
  • нормируемая температура на выходе бойлера;
  • характеристики клапанов и гидравлики; режимы работы насоса.

Система автоматического регулирования тепла устанавливается на существующие трубопроводы.

Стоимость САРТ и срок ее окупаемости определяются после заполнения опросного листа Заказчиком и обработки его специалистами ООО «ТелеСистемы». По опыту нашей компании инвестиции жильцов окупаются от 1 – до 1,5 отопительных периодов, при этом срок службы оборудования при его правильной эксплуатации не менее 15 лет.

Специалисты имеют многолетний опыт установки САРТ. Мы используем надежное оборудование известных производителей, таких как Danfoss, Wilo, Grundfoss и др. Обращайтесь, и мы поможем подобрать для Вас оптимальный вариант. Предварительное обследование – бесплатно.

Дополнительно рекомендуем устанавливать в теплопункте модуль коммерческого учета потребляемой тепловой энергии. Его установка позволит расплачиваться за реальное теплопотребление, а не расчетное, и таким образом снизить расходы на отопление.

Исходя из опыта установки модулей учета тепла средняя экономия в течение отопительного периода составляет:

  1. в жилых кирпичных домах (с учетом прекращения оплаты сверхнормативных потерь) – до 40%;
  2. на объектах социального назначения (школы, детские сады, больницы, санатории и пр.) – до 40%;
  3. в жилых панельных домах – до 35%;
  4. в офисных зданиях и административно-бытовых корпусах – до 25%;
  5. в зданиях промышленного назначения (производственные цеха, теплые склады и пр.) – до 20%.

Комплексный подход к энергосбережению

– Проведение энергетических обследований: от экспресс-обследования до углубленного энергетического обследования, от аудита продукции и технологического процесса до аудита группы предприятий.

– Формирование Программ энергосбережения как для отдельного предприятия, так и для региона по результатам энергетических обследований.

– Реализация Программ энергосбережения: от установки приборов учета энергоресурсов до санации зданий.

Особое место в линейке продуктов компании занимает ряд комплексных продуктов, нацеленных на автоматизацию учета и управления энергоресурсами на основе ПО “Bee.Net”, разработанного специалистами компании.

© ООО «ТелеСистемы» Адрес: 620028, Екатеринбург, ул. Мельникова, д. 20 Тел./факс

ЖКХ в России

Наладка системы отопления

Любая система отопления, вновь смонтированная, подвергнутая ремонту или реконструкции, или разрегулированная в течение длительной эксплуатации, требует тепловой и гидравлической наладки.

Одной из главных задач наладки системы отопления является распределение теплоносителя по домам, а затем по стоякам и отопительным приборам (далее наз. – радиаторы) пропорционально их тепловым нагрузкам.

Расчет системы отопления

Первый этап наладки: расчет системы отопления, цель которого — определить, какие расходы теплоносителя необходимо пропускать по вводному узлу каждого дома, а затем по стоякам и отопительным приборам при расчетных условиях, то есть:

  • при расчетных тепловых потерях через наружные ограждения (стены, окна, потолки, полы) отапливаемого помещения;
  • при установленных радиаторах с расчетными поверхностями нагрева;
  • при расчетной температуре теплоносителя в подающем трубопроводе;
  • при расчетных величинах напоров воды в подающем и обратном трубопроводах на выводах источника теплоснабжения,

Выбор способа регулирования расхода теплоносителя

Второй этап наладки: выбор способа регулирования расхода теплоносителя, который должен поступать в систему отопления каждого дома, и установка соответствующего оборудования..

Расход теплоносителя регулируется одним из четырех способов или одновременно несколькими из них в зависимости от конкретных условий:

  1. Выбором типа и производительности гидроэлеватора (диаметра его сопла) (см. статью «Элеваторный узел»);
  2. Выбором диаметра дроссельных диафрагм и места их установки — на подающем или обратном трубопроводе (или на обоих трубопроводах) в зависимости от необходимого для системы гидравлического режима (профессиональное жаргонное название дроссельной диафрагмы – «шайба», а процесс их установки – «шайбирование»);
  3. Установкой на стояках, кроме запорной арматуры, дополнительно балансировочных (регулирующих) клапанов или дроссельных диафрагм, позволяющих проводить балансировку системы отопления (этот способ эффективен, но пока еще имеет ограниченное распространение);
  4. Выбором автоматических устройств регулирования расхода и температуры теплоносителя.

Проверка правильности и эффективности системы отопления

Третий этап наладки: проверка правильности и эффективности выполненной наладки и, при необходимости, проведение дополнительной регулировки.

Основными показателями правильности наладки системы отопления являются:

соответствие фактических расходов воды расчетным значениям в подающем и обратном трубопроводах дома, в отдельных стояках дома и в отдельных радиаторах. Эти расходы воды могут быть определены как непосредственно по показаниям соответствующих приборов-расходомеров, так и расчетным методом по результатам измерений трех фактических температур: теплоносителя на входе и выходе из здания, в отдельных стояках дома и в отдельных радиаторах и температуры воздуха в помещении (как определить фактический расход воды через радиатор в вашей квартире, см. статью «Неисправность отопления в вашей квартире»).

Показателем правильности наладки служит коэффициент относительного расхода воды, который должен находиться в пределах 0,9 — 1,15 (расчетный расход воды принимается за единицу);

— соответствие фактической температуры воздуха в помещениях нормативным (расчетным) значениям. Усредненное значение замеренных температур не должно быть ниже расчетного более чем на 0,5 °С или выше расчетного более чем на 2 °С.

После установки или замены сопл элеваторов или дроссельных диафрагм на тепловых вводах следует проверить температуру воздуха не менее чем в 15 % помещений.

В случае, если коэффициент относительного расхода воды отличается от нормы 0,9 — 1,15 или усредненное значение замеренных температур воздуха в помещениях ниже расчетного более чем на 0,5 °С или выше расчетного более чем на 2 °С, должна быть произведена смена сопел элеваторов и дроссельных диафрагм, а также настройка автоматических регуляторов температуры.

Результаты испытаний оформляются актом и вносятся в паспорт системы отопления и здания.

Если уважаемые коллеги заинтересуются более подробными сведениями о наладке систем отопления, Вы можете воспользоваться следующей литературой:

  1. СНиП 41-02-2003 Тепловые сети.
  2. Отраслевой стандарт ОСТ 36-68-82 1982 г. Тепловые сети. Режимная наладка систем централизованного теплоснабжения
  3. Типовая инструкция по технической эксплуатации тепловых сетей систем коммунального теплоснабжения МДК 4-02.2001
  4. И. Манюк Наладка и эксплуатация водяных тепловых сетей. В М. Стройиздат, 1988.
  5. Е.Я. Соколов Теплофикация и тепловые сети. М. Энергоиздат, 1982.

Составил специалист ЖКХ Юрий Калнин

Выбираем систему регулирования теплопотребления с максимальной эффективностью

В соответствии с требованиями нормативной документации и ФЗ №261 “Об энергосбережении…” установка систем автоматического погодного регулирования должна стать нормой, как для объектов нового строительства, так и для существующих зданий, так как это является основным инструментом управления теплоснабжением. Сегодня такие системы, вопреки сложившемуся мнению, вполне доступны для большинства потребителей. Они функциональны, обладают высокой надежностью и позволяют оптимизировать процесс потребления тепловой энергии. Срок окупаемости затрат на установку оборудования находится в пределах одного года.

Система автоматического регулирования теплопотребления (САРТ) позволяет снизить потребление тепловой энергии за счет следующих факторов:

  1. Устранения поступления в здание избытков тепловой энергии (перетопов);
  2. Снижения температуры воздуха в ночное время;
  3. Снижения температуры воздуха в праздничные дни.

Укрупненные показатели экономии тепловой энергии от применения САРТ, установленного в индивидуальном тепловом пункте (ИТП) здания представлены рис. №1.

Рис.1 Общая экономия достигает 27% и более*

*по данным ООО НПП “Элеком”

Основные элементы классической САРТ в общем виде показаны на рис. №2.

Рис.2 Основные элементы САРТ в ИТП*

*вспомогательные элементы условно не показаны

Назначение погодного контроллера:

  1. Измерение температур наружного воздуха и теплоносителя;
  2. Управление клапаном КЗР в зависимости в соответствии с заложенными программами (графиками) регулирования;
  3. Обмен данными с сервером.

Назначение подмешивающего насоса:

  1. Обеспечение постоянного расхода теплоносителя в системе отопления;
  2. Обеспечение переменного подмеса теплоносителя.

Назначение клапана КЗР:

управление поступлением теплоносителя из тепловой сети.

Назначение датчиков температуры: измерение температур теплоносителя и наружного воздуха.

  1. Регулятор перепада давления. Регулятор предназначен для поддержания постоянного перепада давления теплоносителя и позволяет исключить отрицательное влияние нестабильного перепада давления тепловой сети на работу САРТ. Отсутствие регулятора перепада давления может привести к неустойчивому функционированию системы, снижению экономического эффекта и срока службы оборудования.
  2. Датчик температуры воздуха в помещении. Датчик предназначен для контроля температуры воздуха внутри помещения.
  3. Сервер сбора данных и управления. Сервер предназначен для удаленного контроля работоспособности оборудования и коррекции отопительных графиков по показаниям датчиков температуры воздуха внутри помещения.

Принцип работы классической схемы САРТ состоит в качественном регулировании, дополненном количественным регулированием. Качественное регулирование – это изменение температуры теплоносителя, поступающего в систему отопления здания, а количественное регулирование – это изменение количества теплоносителя, поступающего из тепловой сети. Происходит этот процесс таким образом, что количество теплоносителя, поступаемого из тепловой сети, меняется, а количество теплоносителя, циркулирующего в системе отопления, остается постоянным. Таким образом, сохраняется гидравлический режим системы отопления здания и происходит изменение температуры теплоносителя, поступающего в отопительные приборы. Сохранение гидравлического режима постоянным является необходимым условием для равномерного прогрева здания и эффективной работы системы отопления.

Физически процесс регулирования происходит так: погодный контроллер, в соответствии с заложенными в него индивидуальными программами регулирования и в зависимости от текущих температур наружного воздуха и теплоносителя, подает управляющие воздействия на клапан КЗР. Приходя в движение, запорный орган клапана КЗР уменьшает или увеличивает расход сетевой воды из тепловой сети по подающему трубопроводу до узла смешения. Одновременно с этим, за счет насоса в узле смешения, производится пропорциональный отбор теплоносителя из обратного трубопровода и подмешивание его в подающий, что при сохранении гидравлики системы отопления (количества теплоносителя в системе отопления) приводит к требуемым изменениям температуры теплоносителя, поступающего в радиаторы отопления. Процесс снижения температуры поступающего теплоносителя, уменьшает количество тепловой энергии, которая отбирается в единицу времени от радиаторов отопления, что и приводит к экономии.

Схемы САРТ в ИТП зданий у разных производителей могут непринципиально отличаться, но во всех схемах основными элементами являются: погодный контроллер, насос, клапан КЗР, датчики температуры.

Хочется отметить, что в условиях экономического кризиса все большее количество потенциальных заказчиков становятся чувствительными к цене. Потребители начинают искать альтернативные варианты с наименьшим составом оборудования и стоимостью. Иногда на этом пути возникает ошибочное желание сэкономить на установке подмешивающего насоса. Такой подход не оправдан для САРТ, монтируемых в ИТП зданий.

Что произойдет если не установить насос? А произойдет следующее: в результате работы клапана КЗР гидравлический перепад давления и, соответственно, количество теплоносителя в системе отопления будут постоянно меняться, что неизбежно приведет к неравномерному прогреву здания, неэффективной работе отопительных приборов и риску остановки циркуляции теплоносителя. Кроме этого, при отрицательных температурах наружного воздуха может произойти “размораживание” системы отопления.

Экономить на качестве погодного контроллера так же не стоит, т.к. современные контроллеры позволяют выбирать такой график управления клапаном, который при сохранении комфортных условий внутри объекта, позволяет получить значительные объемы экономии тепловой энергии. Сюда входят такие эффективные программы управления теплопотреблением как: устранение перетопов; снижение потребления в ночные часы и нерабочие дни; устранение завышения температуры обратной воды; защита от “размораживания” системы отопления; коррекция отопительных графиков по температуре воздуха в помещении.

Подводя итог сказанному, хочется отметить важность профессионального подхода к выбору оборудования системы погодного автоматического регулирования теплопотребления в ИТП здания и еще раз подчеркнуть, что минимально достаточными основными элементами такой системы являются: насос, клапан, погодный контроллер и датчики температуры.

23-летний опыт выполнения работ, система качества ИСО 9001, лицензии и сертификаты на производство и ремонт средств измерений, допуски СРО (проектирование, монтаж, энергоаудит), аттестат аккредитации в области обеспечения единства измерений и рекомендации клиентов, включая государственные органы, муниципальные администрации, крупные промышленные предприятия, позволяют предприятию «ЭЛЕКОМ» реализовывать высокотехнологичные решения для энергосбережения и повышения энергетической эффективности с оптимальным соотношением цена/качество.

Пуск и регулировка систем отопления

Пуск системы отопления. Перед пуском системы отопления проводится внешний осмотр оборудования в результате которого устанавливается соответствие проекту диаметров, уклонов, окраски, теплоизоляции и прокладки трубопроводов, типа и количества нагревательных приборов, правильность установки и исправность запорно-регулирующей арматуры, грязевиков, элеваторов или смесительных насосов, контрольно-измерительных приборов, подпиточных насосов и другого оборудования, правильность установки отопительных приборов.

Пуск системы отопления производится только после промывки и опрессовки, а также проверки качества проведенных на системе работ и наличия рабочих документов и документации на систему и ее оборудование (паспортов, актов промывок и испытаний, рабочих схем, инструкций на оборудование системы).

При массовом включении систем отопления в населенных пунктах рекомендуется для быстрого удаления воздуха из систем следующий порядок пуска систем в действие: при ровном и понижающемся профиле местности от источника теплоты — в направлении от источника к конечным потребителям, а при повышающемся профиле местности от источника теплоты — в направлении от конечного потребителя к источнику.

Пуск в действие системы отопления является ответственным мероприятием по эксплуатации системы, проводится в строгом соответствии с графиком бригадой слесарей, разбитых на пары, каждая из которых выполняет операции при пуске системы на 3—4 стояках. В момент наполнения системы все воздухосборники в верхних точках должны быть открыты. Если в обратном трубопроводе давление выше возможного гидростатического давления в системе отопления, наполнение системы производится плавным открытием задвижки на обратном трубопроводе так, чтобы давление снизилось не более чем на 0,03—0,5 МПа. Если на обратном трубопроводе установлен водомер, то систему наполняют по обводному трубопроводу, а при его отсутствии водомер снимают и на его место устанавливают патрубок с фланцем.

Если давление в обратном трубопроводе ниже возможного гидростатического давления в системе отопления, то наполнение производят следующим образом.

При отсутствии регулятора давления «до себя» — первоначально подачей воды из обратного трубопровода, а затем из подающего трубопровода через подсасывающую линию к элеватору в обратную магистраль, при этом наполнение производят медленно, контролируя показания манометров.

При наличии регулятора давления «до себя» система не может быть заполнена обычным открытием задвижки на обратном трубопроводе: так, при отсутствии воды в системе отопления и циркуляции в ней на клапан регулятора будет действовать одностороннее усилие от пружины, стремящейся закрыть клапан. В этом случае для заполнения необходимо провести следующие операции: открыть воздухосборники в верхней части системы и задвижку на обратном трубопроводе, ослабить пружину клапана, приоткрыть задвижку на подающем трубопроводе и начать медленное заполнение системы со стороны подающего трубопровода. При этом необходимо наблюдать за манометром со стороны системы отопления в тепловом узле здания. Как только давления перед клапаном и за клапаном (на обратном трубопроводе) сравняются, производят натяжение пружины. Ее натягивают до тех пор, пока из системы не будет удален весь воздух, а из воздухосборников будет поступать вода. После этого воздушные краны закрывают и производят дальнейшее натяжение пружины с тем, чтобы давление перед регулятором было равно высоте системы плюс 3—5 м.

При пуске систем отопления в зимнее время кроме вышеуказанных операций необходимо выполнить следующие мероприятия по предупреждению замораживания системы: 1) систему отопления следует наполнять отдельными участками (по 3—5 стояков) начиная с наиболее удаленных участков от ввода; наполнение и пуск стояков и приборов лестничных клеток могут быть осуществлены после наполнения и пуска основных стояков системы отопления здания; 2) стояки и приборы, находящиеся в помещениях, которые сообщаются с наружным воздухом (неутепленные помещения, помещения с отсутствующим остеклением окон, неутепленные проходы, тамбуры и т.п.), должны быть отключены.

Системы отопления с нижней разводкой и горизонтальные однотрубные системы заполняют водой из подающего трубопровода теплосети через обе магистрали — прямую и обратную. Для этого в тепловом вводе устраивают перемычку. При заполнении горизонтальной однотрубной системы вначале заполняют теплоносителем стояк и приборы одного этажа, затем второго и т.д.

В системе отопления с естественной циркуляцией, как правило, заполняют водой все стояки системы без разделения на части. При достаточном давлении в водопроводе систему отопления заполняют водой из водопровода. При недостаточном давлении для заполнении системы используют насос. Регулирование системы отопления. Важным условием удовлетворительной работы системы отопления является достижение гидравлического баланса. В несбалансированной системе отдельные отопительные приборы или контуры могут быть недостаточно снабжены теплоносителем, в то время как другие получают его с избытком.

После пуска системы отопления в действие определяют расход тепловой энергии, идущей на отопление. При несоответствии требуемым значениям тепловой нагрузки систему отопления регулируют.

Системы отопления зданий и сооружений подвергают регулировке, чтобы обеспечить расчетные температуры воздуха помещений. Для этого замеряют температуру поверхностей нагревательных приборов с помощью термоэлектрических термометров — термощупов (термопар).

Регулирование теплоотдачи систем отопления может быть осуществлено двумя способами: 1) качественным регулированием, т.е. изменением температуры теплоносителя; 2) количественным регулированием, т.е. изменением количества теплоносителя.

Качественное регулирование систем центрального отопления осуществляют централизованно на котельной или на другом источнике теплоты; количественное регулирование — непосредственно на системе отопления здания.

Регулирование системы отопления здания начинается с определения расходов теплоносителя по водомерам и расходомерам, установленным в тепловом пункте. При отсутствии контрольно-измерительных приборов регулирование системы отопления базируется на проверке соответствия фактических расходов воды расчетным. При этом под расчетным расходом понимается расход воды в системе отопления, обеспечивающий заданную теплоотдачу (потребляемую тепловую энергию). Степень соответствия фактического расхода воды расчетному определяется температурным перепадом воды в системе, при этом фактическая температура воды в тепловой сети не должна отклоняться от расчетной более чем на 2 °С.

Если перепад ниже допустимого, то это указывает на завышенный расход воды и соответственно завышенный диаметр отверстия дроссельной диафрагмы или сопла на входе в систему отопления. Если температурный перепад выше допустимого значения, то это указывает на заниженный расход воды и соответственно на заниженный диаметр дроссельной диафрагмы или сопла. И в том, и в другом случае определяется новый диаметр сопла элеватора.

При невозможности определения фактических потерь напора в системе определение нового диаметра дроссельной шайбы или сопла может быть осуществлено с помощью расчетного значения потерь напора. Если после замены сопла или дроссельной шайбы внутренняя температура отапливаемых помещений будет отличаться больше, чем на 2 °С по сравнению с расчетной, то необходимо вторично изменить диаметр сопла или дроссельной шайбы. Необходимо отметить, что регулировка систем отопления зданий с помощью шайб достигается только в том случае, когда шайбы будут рассчитаны и установлены на вводах всех зданий, подключенных к тепловой сети.

Внутренняя температура воздуха в помещениях зданий измеряется через 3—4 ч после включения в работу системы отопления здания при соблюдении температурного графика воды в подающем трубопроводе. Температура замеряется не менее чем в 15% отапливаемых помещений.

Вследствие того что системы отопления, как правило, регулируют не при расчетной наружной температуре, а при сравнительно высоких наружных температурах в начале отопительного сезона, в системе отопления возникают разрегулировки: — вертикальная — определяется несоответствием теплоотдачи нагревательных приборов различных этажей требуемым значениям; — горизонтальная — определяется неравномерным изменением теплоотдачи нагревательных приборов одного этажа.

Вертикальная разрегулировка двухтрубных систем водяного отопления с постоянным расходом воды возникает вследствие неодинакового изменения гравитационного давления в нагревательных приборах разных этажей при изменении наружной температуры. В однотрубных системах вертикальная разрегулировка возникает вследствие изменения расхода воды в системе. Уменьшение расхода приводит к большему охлаждению воды в прибоpax вышележащих этажей; следовательно, в нижние приборы будет поступать сильно охлажденная вода, что резко уменьшит теплоотдачу нижних приборов. Для повышения теплоотдачи нижних приборов можно повысить температуру сетевой воды, но это приведет к повышенной теплоотдаче верхних приборов. В однотрубных системах с замыкающими участками вертикальная разрегулировка, как правило, меньше, чем в однотрубных проточных системах.

Горизонтальная разрегулировка систем отопления возникает из-за охлаждения воды в магистральных трубопроводах и стояках. Превышение теплоотдачи через трубы выше расчетных значений приводит к снижению температуры воды, поступающей в отдельные стояки. В стояках, ближайших к тепловому вводу, температура воды будет выше, чем в стояках, удаленных от теплового ввода.

Разрегулировка систем водяного отопления устраняется в процессе эксплуатационного регулирования систем.

В течение всего времени регулирования температура сетевой воды, поступающей в систему отопления, должна поддерживаться постоянной.

Наибольшей разрегулировке подвергают двухтрубные системы отопления. Такие системы необходимо регулировать при температурах воды в системе, которые соответствуют средней наружной температуре отопительного периода, с поправками на температурный перепад в приборах, расположенных на разных этажах: для приборов верхних этажей — на 1,5—3°С выше нормального, для приборов нижних этажей — на ГС ниже нормального.

Эксплуатационное регулирование систем проводят по требуемому перепаду температур в тепловом вводе путем изменения количества поступающей в систему воды по приведенным выше требованиям в зависимости от типа систем и теплового ввода. Так как перепад температур связан с расходом воды обратно пропорциональной зависимостью, для увеличения перепада температур до требуемого необходимо уменьшить расход воды путем прикрытия задвижки на вводе или, наоборот, увеличить расход при повышенном перепаде температур. Чем больше расход воды через нагревательные приборы, тем больше скорость ее движения, а следовательно, вода в приборе остынет меньше, средняя температура в приборе увеличится, что вызовет его повышенную теплоотдачу. После завершения наладки в тепловом узле приступают к наладке отдельных стояков системы. В тупиковых системах регулировку производят кранами на стояках, дроссельными шайбами или балансировочными вентилями, установленными на стояках.

Если на стояках имеются только краны, то вначале проводят предварительную регулировку исходя из правила: чем ближе к вводу расположен стояк, тем больше должен быть прикрыт кран, так чтобы на ближайшем стояке кран пропускал минимальное количество воды; на самом дальнем стояке кран должен быть полностью открыт. После предварительной регулировки проверяют прогреваемость каждого стояка и приступают последовательно к регулировке стояков, начиная с самого дальнего и заканчивая самым ближним к вводу.

Если на стояках установлены дроссельные шайбы, то распределение воды по стоякам проверяют по расчетному перепаду температур для системы отопления. Закончив наладку стояков, приступают к регулированию теплоотдачи нагревательных приборов путем замера перепада температур на входе и выходе воды из прибора. При регулировании системы с помощью термощупов допускается отклонение от расчетного значения на ±10%.

Балансировочные вентили — это трубопроводная дросселирующая арматура переменного гидравлического сопротивления, предназначенная для обеспечения расчетного потокораспределе-ния по элементам трубопроводной сети или для стабилизации в них циркуляционных давлений или температур. В настоящее время применяются два типа балансировочных вентилей — ручные и автоматические.

Ручные вентили используют вместо дросселирующих диафрагм (шайб) для наладки системы отопления, в которой либо отсутствуют автоматические регулирующие устройства, либо они не позволяют ограничить предельный (расчетный) расход перемещаемой среды. Ручной балансировочный вентиль представляет собой дросселирующее устройство вентильного типа. Через ручные балансировочные вентили можно не только произвести регулирование системы, но и отключить ее отдельные элементы, опорожнить системы через специальные спускные краны. Настройка вентиля на требуемую пропускную способность определяется высотой подъема шпинделя. Регулирование с помощью ручных балансировочных вентилей производится аналогично регулированию с помощью дроссельных шайб.

Автоматические балансировочные вентили применяются для 1 поддержания постоянной разности давлений между подающим и обратным трубопроводами системы, для обеспечения постоянного расхода теплоносителя или стабилизации его температуры. Вентили устанавливаются на стояках или горизонтальных ветвях системы отопления. При необходимости балансировочный вентиль комплектуется дополнительными устройствами, которые позволяют выполнять следующие дополнительные функции: отключение отдельных стояков или ветвей системы, измерение перепада давления и определение расхода теплоносителя, слив теплоносителя и заполнение системы, выпуск воздуха, предварительную настройку, регулирование с электрическим датчиком температуры, регулирование (контроль) перепада давлений. Регулирование автоматического балансировочного вентиля производится в соответствии с инструкцией по эксплуатации с помощью регулировочного винта, который позволяет изменять проходное сечение клапана и соответственно расход теплоносителя.

В двухтрубных системах вследствие влияния напора перегреваются, как правило, приборы верхних этажей. Если в нижних этажах перегрева нет, то снижают теплоотдачу приборов верхних этажей, уменьшая проходное сечение кранов двойной регулировки. При отсутствии таких кранов перед приборами устанавливают дроссельные шайбы, определив диаметр из условия прохождения через них расчетного расхода воды и приняв потери напора в приборе равными 0,05 м, или уменьшают поверхность нагрева нагревательного прибора. При перегреве приборов в верхних этажах и недогреве в нижних следует с помощью кранов двойной регулировки уменьшить проходное сечение на верхних этажах и увеличить его на нижних. При отсутствии кранов на обратном трубопроводе в стояке между перегреваемыми и недогреваемыми этажами разрешается устанавливать дроссельную шайбу.

При перегреве приборов верхних этажей и недогреве нижних в однотрубных системах с замыкающими участками могут проводиться следующие мероприятия: устанавливают дроссельные шайбы перед приборами верхних этажей; уменьшают поверхность нагрева приборов; демонтируют замыкающие участки у приборов нижних этажей (1-го и 2-го) и при необходимости увеличивают диаметры подводок.

При равномерном недогреве отопительных приборов верхних этажей и одновременном перегреве приборов нижних этажей уменьшают коэффициент смешения элеватора.

Расход воды в отопительных приборах однотрубной системы регулируют по перепаду температуры воды в приборах.

Если краны на стояках отсутствуют, то с помощью кранов на приборах можно одновременно перераспределять расходы воды как по отдельным стоякам, так и по отдельным приборам. Степень открывания кранов при регулировании увеличивается по мере удаления приборов от теплового ввода.

В системах с верхней разводкой, кроме того, степень открывания кранов в пределах стояка уменьшается с движением воды от верхнего этажа к нижнему, а в системах с нижней разводкой она одинакова.

В двухтрубных системах отопления равномерность прогрева приборов повышается с увеличением расхода воды в системе. Для однотрубных систем отопления значительно увеличивать расход воды в системе по сравнению с расчетным не рекомендуется, так как это может привести к поэтажной разрегулировке системы.

Регулирование тупиковой системы требует значительных трудозатрат и времени, так как его проводят в несколько этапов, постепенно приближая теплоотдачу приборов к требуемой.

В двухтрубной системе с верхней разводкой и попутным движением воды, где длина всех циркуляционных колец примерно одинакова, разница в прогреве приборов может быть вызвана только дополнительным естественным давлением (напором), возникающим у приборов верхних этажей. Для этого при наладке прикрывают краны у приборов верхних этажей, при этом степень прикрытия кранов у приборов одного этажа должна быть одинаковой, так как все стояки находятся в равных условиях. После этого окончательно регулируют теплоотдачу приборов.

В системах с нижней разводкой и попутным движением воды дополнительное естественное давление, возникающее у приборов верхних этажей, мало влияет на работу нижележащих приборов ввиду большой длины циркуляционного кольца. Поэтому в таких системах возможны лишь незначительные неравномерности в прогреве отдельных приборов, которые легко устраняются регулированием.

В вертикальных однотрубных системах с попутным движением воды все нагревательные приборы и стояки находятся в равных условиях, и регулирование таких систем не представляет затруднений.

Эксплуатационное регулирование систем отопления с естественной циркуляцией является наиболее простым, так как в таких системах обычно не бывает полностью непрогреваемых приборов.

До начала регулировки краны на всех стояках и у приборов должны быть полностью открыты. Неравномерности прогрева устраняются регулировкой кранов.

Температура воды во время наладки должна поддерживаться в пределах 50—60°С.

По окончании регулировки системы температуру в котлах местной системы отопления доводят до 90°С и при этой температуре еще раз проверяют прогреваемость приборов.

В условиях эксплуатации, как бы хорошо ни была отрегулирована работа системы отопления, действительная температура воздуха в помещениях может быть различной. Надежным показателем нормальной теплоотдачи отопительных приборов является температура теплоносителя в обратных стояках. Пониженная температура указывает на то, что система отопления недополучает из тепловой сети требуемого количества теплоносителя или его температура низка.

Повышенная температура указывает на перерасход теплоносителя по сравнению с расчетным значением или на поступление теплоносителя с температурой выше нормальной по температурному графику.

Читать далее: Организация труда в строительстве Вентиляция Нормативная и проектная документация Охрана труда при проведении ремонтных работ Содержание конструкций здания Себестоимость и рентабельность в строительстве Техническое и тарифное нормирование Организация управления строительством в ссср Жилищное строительство в Советском Союзе Оборудование и устройство систем вентиляции и кондиционирования

  1. Все очень хорошо и подробно описано. Спасибо, помогли грамотно подготовится.

    — Игорь · янв 28, 02:15 ·

Погодозависимая автоматика с запорно-регулирующим клапаном и циркуляционным насосом.

И, наконец, последняя разновидность автоматики для поддержания температуры в квартирах жилых домов в зависимости от температуры на улице это погодозависимая автоматика с запорно-регулирующим клапаном и циркуляционным насосом.

Разберем принцип действия данной автоматики поддержания температуры в квартире, а вернее сказать во всем многоквартирном жилом доме.

Здесь регулирование температуры в отопительной системе происходит за счет изменения пропускной способности клапана и также как и в предыдущей схеме подмеса возвращаемой (обратной) сетевой воды из жилого дома при помощи циркуляционного насоса, установленного теперь уже на обратном трубопроводе отопительной системы. Принципиально, где будет установлен сетевой или циркуляционный насос, вообще то неважно, просто для двухходового клапана такая схема все-таки предпочтительнее из-за его конструктивных особенностей.

В процессе регулирования контроллер также периодически опрашивает датчики температуры теплоносителя в отопительной системе дома, датчики воздуха в помещении (если они установлены) и датчик наружного воздуха. После обработки полученной информации контроллер формирует выходной управляющий сигнал, на открытие или закрытие исполнительного механизма двухходового клапана, при этом соответственно изменяется величина открытия или закрытия проходного сечения регулирующего клапана. При отсутствии датчика воздуха внутри помещения главным приоритетом регулирования также является поддержание температуры в помещении квартир по температурному графику.

Недостаток у схем регулирования с клапанами один – пропадание электроэнергии, подробнее о достоинствах и недостатках погодозависимых автоматик смотрите в статье о погодном регулировании с регулирующим элеватором . Преимуществом схем погодного регулирования с клапанами перед регулирующим элеватором обычно называют глубину регулирования, хотя по нашему мнению такое преимущество спорное и может легко превратиться в недостаток, если например в ИТП имеется узел учета тепловой энергии, и его пределы измерения хуже пределов работы автоматики погодного регулирования. После установки автоматики погодного регулирования без согласования с энергоснабжающей организацией, такой УУТЭ на законных основаниях может быть признан некоммерческим, а значит, вместо экономии вы опять получите начисление оплаты за тепло по нормативу.

  • недостаточное давление на вводе в ИТП, менее 0,07 мПа
  • завышенное сопротивление внутренней системы отопления дома, более 5 м.вод.ст.
  • установка на отопительных приборах и стояках автоматической регулирующей арматуры, например
  • использование независимой системы отопления через теплообменники.

Хочется также предостеречь жильцов, особо радеющих за экономию, схемы погодозависимой автоматики со смесительными клапанами нельзя использовать без насоса или с выключенным насосом. В режиме работы с выключенным насосом резко уменьшается прокачка теплоносителя через отопительные приборы, разница в температурах между температурами в отопительных приборах разных квартир порою достигает 45 градусов, вместо рекомендованных для экономичного режима работы погодозависимой автоматики двенадцати. И главное из-за отсутствия смешения в морозы температура в отопительных приборах первых по ходу квартир может достигнуть 115 и более градусов, что неминуемо, приведет к выходу из строя современных полипропиленовых труб, а также ожогам при случайных прикосновениях к отопительным приборам – это как минимум. При этом жильцы последних по ходу теплоносителя квартир будут сидеть в холоде.

Вот такая экономия, а по приборам будет все ОК. И главное если откажет обратный клапан на перемычке между прямым и обратным трубопроводом не только ваш дом, но и весь район может остаться без тепла. Теплоноситель не пойдет в квартиры, а вернется назад в котельную.

Мы разобрали возможные варианты схематических решений для реализации устройства погодозависимой автоматики в рамке управления многоэтажных жилых домов. В любом случае решение о выборе той или иной схемы погодозависимого регулирования температуры в квартирах жилого дома, и главное подбор оборудования следует поручить специалистам. Вам, как жильцам свое слово стоит сказать только при выборе проектирующей организации и типе оборудования – отечественное или импортное. Цена зависит именно от этого.

Все о ценах на проектные работы, приобретаемое оборудование и монтаж и наладку автоматики погодного регулирования в квартирах жилых домов на следующей странице.

Для того, чтобы установить систему теплосбережения в Вашем доме, нужно:

Заявка

Обследование

Выезд специалиста на объект и коммерческое предложение – бесплатно

Договор

Выполняем работы по капитальному и текущему ремонту

Проект

Разрабатываем индивидуальный проект. Согласование в надзорных органах

Монтаж

В любое время года. Гарантия качества. Точно в срок.

Сдача в эксплуатацию

Проводим пусконаладочные работы. Настройка оптимального режима теплопотребления дома.

в период с 2013 по 2021 год проведено дооборудование существующих тепловых узлов погодозависимой автоматикой отопления и поддержания заданной температуры горячей воды. В системах отопления и ГВС установлены 2-х контурные регуляторы АРТ-05, регулирующие клапаны с электроприводами и циркуляционные насосы.

Погодозависмой автоматикой были дооборудованы многоквартирные дома, административные и производственные здания, также учреждения Департамента культуры Владимирской области.

Среднемесячный результат теплоэкономии при пропорциональном регулировании отопления составил 20%. При этом была решена задача равномерного нагрева отопительных приборов по всему дому и отсутствие перетопов.

По согласованию с заказчиком возможно установить суточный график регулирования температуры отопления и горячей воды для дополнительной экономии и комфорта жителей МКД.

Регулировка температуры отопления в тепловом узле многоквартирного дома

На территории России обычно используется система центрального отопления многоквартирного дома, теплоноситель в которую поступает от городской котельной или ТЭЦ. При этом водяные контуры обустраивают по разным схемам, поскольку они бывают однотрубными и двухтрубными. Обычно потребителей тепла мало интересуют подобные нюансы, но при необходимости произвести ремонт квартиры и поменять старые батареи на новые современные отопительные радиаторы в подобных тонкостях владельцам жилой недвижимости желательно разбираться.

Стоимость автономного отопления в многоквартирном доме немаленькая, поэтому предпочтительнее вводить в строй одну мощную котельную, способную обеспечить теплом и горячей водой жилой микрорайон.

По магистральным трубопроводам теплоноситель из центральной котельной подается на тепловой узел многоквартирного дома и дальше распределяется по квартирам. Дополнительную регулировку степени подачи горячей воды в таком случае производят непосредственно на тепловом пункте, для чего используют циркулярные насосы. Данный способ подачи теплоносителя конечному потребителю называют независимым (подробнее: «Централизованное отопление это одновременно плюсы и минусы»).

Кроме этого в многоквартирных домах используют зависимые отопительные системы. В таком случае теплоноситель транспортируют в квартирные батареи без дополнительного распределения прямо с ТЭЦ. При этом температура воды находится вне зависимости от того, подается она через распределительный пункт или непосредственно потребителям.

Виды систем отопления многоквартирного дома бывают открытыми или закрытыми (детальнее: «Открытая и закрытая система теплоснабжения — преимущества и недостатки в сравнении»).

В последнем варианте теплоноситель с ТЭЦ или центральной котельной после попадания в распределительный пункт подается раздельно на отопительные радиаторы и на горячее водоснабжение. В открытых системах подобное разделение конструкцией не предусмотрено и подогретая вода для нужд жильцов поставляется с магистральной трубы, поэтому потребители вне отопительного сезона остаются без горячего водоснабжения, что вызывает немало нареканий в адрес коммунальных служб.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: