Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый вентилятором. Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.
Определение скорости движения воздуха в воздуховодах:
где L – расход воздуха, м 3 /ч; F – площадь сечения канала, м 2 .
Рекомендация 1. Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.
Рекомендация 2. В системах с большой протяженностью воздуховодов и большим количеством вентиляционных решеток целесообразно размещать вентилятор в середине вентиляционной системы. Такое решение обладает несколькими преимуществами. С одной стороны, снижаются потери давления, а с другой стороны, можно использовать воздуховоды меньшего сечения.
Пример расчета вентиляционной системы: Расчет необходимо начать с составления эскиза системы с указанием мест расположения воздуховодов, вентиляционных решеток, вентиляторов, а также длин участков воздуховодов между тройниками, затем определить расход воздуха на каждом участке сети.
Выясним потери давления для участков 1-6, воспользовавшись графиком потери давления в круглых воздуховодах, определим необходимые диаметры воздуховодов и потерю давления в них при условии, что необходимо обеспечить допустимую скорость движения воздуха.
Участок 1: расход воздуха будет составлять 220 м 3 /ч. Принимаем диаметр воздуховода равным 200 мм, скорость – 1,95 м/с, потеря давления составит 0,2 Па/м х 15 м = 3 Па (см. диаграмму определение потерь давления в воздуховодах).
Участок 2: повторим те же расчеты, не забыв, что расход воздуха через этот участок уже будет составлять 220+350=570 м 3 /ч. Принимаем диаметр воздуховода равным 250 мм, скорость – 3,23 м/с. Потеря давления составит 0,9 Па/м х 20 м = 18 Па.
Участок 3: расход воздуха через этот участок будет составлять 1070 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость 3,82 м/с. Потеря давления составит 1,1 Па/м х 20= 22 Па.
Участок 4: расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость – 5,6 м/с. Потеря давления составит 2,3 Па х 20 = 46 Па.
Участок 5: расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па/м х 1= 2,3 Па.
Участок 6: расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па х 10 = 23 Па. Суммарная потеря давления в воздуховодах будет составлять 114,3 Па.
Когда расчет последнего участка завершен, необходимо определить потери давления в сетевых элементах: в шумоглушителе СР 315/900 (16 Па) и в обратном клапане КОМ 315 (22 Па). Также определим потерю давления в отводах к решеткам (сопротивление 4 -х отводов в сумме будут составлять 8 Па).
Определение потерь давления на изгибах воздуховодов
График позволяет определить потери давления в отводе, исходя из величины угла изгиба, диаметра и расхода воздуха.
Пример. Определим потерю давления для отвода 90° диаметром 250 мм при расходе воздуха 500 м 3 /ч. Для этого найдем пересечение вертикальной линии, соответствующей нашему расходу воздуха, с наклонной чертой, характеризующей диаметр 250 мм, и на вертикальной черте слева для отвода в 90° находим величину потери давления, которая составляет 2 Па.
Принимаем к установке потолочные диффузоры серии ПФ, сопротивление которых, согласно графику, будет составлять 26 Па.
Теперь просуммируем все величины потери давления для прямых участков воздуховодов, сетевых элементов, отводов и решеток. Искомая величина 186,3 Па.
Мы рассчитали систему и определили, что нам нужен вентилятор, удаляющий 1570 м 3 /ч воздуха при сопротивлении сети 186,3 Па. Учитывая требуемые для работы системы характеристики нас устроит вентилятор требуемые для работы системы характеристики нас устроит вентилятор ВЕНТС ВКМС 315.
Определение потерь давления в воздуховодах
Определение потерь давления в обратном клапане
Подбор необходимого вентилятора
Определение потерь давления в шумоглушителях
Определение потерь давления на изгибах воздухуводов
Определение потерь давления в диффузорах
Цель аэродинамического расчета заключается в определении размеров поперечных сечений и потерь давлений на участках системы и в системе в целом. При расчете необходимо учитывать следующие положения.
1. На аксонометрической схеме системы проставляются расходы и двсех участков.
2. Выбирается магистральное направление и производится нумерация участков, затем нумеруют ответвления.
3. По допустимой скорости на участках магистрального направления определяют площади поперечных сечений:
Полученный результат округляют до стандартных значений, являющихся расчетными, и по стандартной площади находят диаметр d или размеры a и b канала.
В справочной литературе до таблиц аэродинамического расчета приведен перечень стандартных размеров площадей воздуховодов круглой и прямоугольной формы.
*Примечание: мелкие птицы, попавшие в зону факела со скоростью, равной 8 м/с, прилипают к решетке.
4. Из таблиц аэродинамического расчета по выбранному диаметру и расходу на участке определяют расчетные значения скорости υ, удельные потери на трение R, динамическое давление Р дин. Если необходимо, то определяют коэффициент относительной шероховатости β ш.
5. На участке определяют виды местных сопротивлений, их коэффициенты ξ и суммарное значение ∑ξ.
6. Находят потери давления в местных сопротивлениях:
Z = ∑ξ · Р дин.
7. Определяют потери давления на трение:
∆Р тр = R · l.
8.Рассчитывают потери давления на данном участке по одной из следующих формул:
∆Р уч = Rl + Z,
∆Р уч = Rlβ ш + Z.
Расчет повторяют с пункта 3 до пункта 8 для всех участков магистрального направления.
9. Определяют потери давления в оборудовании, расположенном на магистральном направлении ∆Р об.
10. Рассчитывают сопротивление системы ∆Р с.
11. Для всех ответвлений повторяют расчет с пункта 3 до пункта 9, если на ответвлениях есть оборудование.
12. Производят увязку ответвлений с параллельными участками магистрали:
. (178)
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat…
Ответвления должны иметь сопротивление немного больше или равное сопротивлению параллельного участка магистрали.
Воздуховоды прямоугольной формы имеют аналогичный порядок расчета, только в пункте 4 по значению скорости, найденной из выражения:
,
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat…
и эквивалентного диаметра по скорости d υ находят из таблиц аэродинамического расчета справочной литературы удельные потери на трение R, динамическое давление Р дин, причем L табл ≠ L уч.
Аэродинамические расчеты обеспечивают выполнение условия (178) за счет изменения диаметров на ответвлениях или установкой дросселирующих устройств (дроссель-клапанов, шиберов).
Для некоторых местных сопротивлений значение ξ приводится в справочной литературе в зависимости от скорости. Если значение расчетной скорости не совпадает с табличным, то ξ пересчитывают по выражению:
Для неразветвленных систем или систем незначительных размеров увязку ответвлений производят не только с помощью дроссель-клапанов, но и диафрагм.
Для удобства аэродинамический расчет выполняют в табличной форме.
Рассмотрим порядок аэродинамического расчета вытяжной механической системы вентиляции.
№№ участ-ка | L, м 3 /ч | F, м 2 | V, м/с | a×b, мм | D э, мм | β ш | R, Па/м | l, м | Rlβ ш, Па | Вид местного сопротивления | ∑ξ | Р д, Па | Z=∑ξ· Р д Па | ΔР = Rl + Z, Па |
на участке | на магист-рали | |||||||||||||
1-2 | 0,196 | 11,71 | — | 2,56 | 11,93 | 30,5 | 0,42-вн. расширение 0,38-конфузор 0,21-2отвода 0,35-тройник | 1,57 | 83,63 | 131,31 | 282,85 | 282,85 | ||
2-3 | 0,396 | 11,59 | — | 1,63 | 15,35 | 25,0 | 0,21-3отвода 0,2-тройник | 0,83 | 81,95 | 68,02 | 93,04 | 375,89 | ||
3-4 | 0,502 | 10,93 | — | 1,25 | 2,76 | 3,5 | 0,21-2отвода 0,1-переход | 0,52 | 72,84 | 37,88 | 41,33 | 417,21 | ||
4-5 | 0,632 | 8,68 | 795х795 | 2,085 | 0,82 | 3,50 | 6,0 | 5,98 | 423,20 | |||||
2″-2 | 0,196 | 11,71 | — | 2,56 | 6,27 | 16,1 | 0,42-вн. расширение 0,38-конфузор 0,21-2отвода 0,98-тройник | 1,99 | 83,63 | 166,43 | 303,48 | |||
6-7 | 0,0375 | 5,50 | 250х200 | — | 1,8-сетка | 1,80 | 18,48 | 33,26 | 33,26 | |||||
0,078 | 10,58 | — | 3,79 | 5,54 | 21,0 | 1,2-поворот 0,17-тройник | 1,37 | 68,33 | 93,62 | 114,61 | ||||
7-3 | 0,078 | 11,48 | — | 4,42 | 5,41 | 23,9 | 0,17-отвод 1,35-тройник | 1,52 | 80,41 | 122,23 | 146,14 | |||
7″-7 | 0,015 | 4,67 | 200х100 | — | 1,8-сетка | 1,80 | 13,28 | 23,91 | 23,91 | |||||
0,0123 | 5,69 | — | 3,80 | 1,23 | 4,7 | 1,2-поворот 5,5-тройник | 6,70 | 19,76 | 132,37 | 137,04 |
Тройники имеют два сопротивления — на проход и на ответвление, и они всегда относятся к участкам с меньшим расходом, т.е. либо к проходному сечению, либо к ответвлению. При расчете ответвлений в графе 16 (табл. стр.88) прочерк.
Чтобы определиться с размерами сечений на любом из отрезков воздухораспределительной системы, необходимо произвести аэродинамический расчет воздуховодов. Показатели, полученные при таком расчёте, определяют работоспособность как всей проектируемой системы вентиляции, так и отдельных её участков.
Для создания комфортных условий в кухне, отдельной комнате или помещении в целом необходимо обеспечить правильную проектировку воздухораспределительной системы, которая состоит из множества деталей. Важное место среди них занимает воздуховод, определение квадратуры которого оказывает влияние на значение скорости воздушного потока и шумность вентиляционной системы в целом. Определить эти и ряд других показателей позволит аэродинамический расчет воздуховодов.
Этап первый
Сюда входит аэродинамический расчёт механических систем кондиционирования или вентиляции, который включает ряд последовательных операций.Составляется схема в аксонометрии, которая включает вентиляцию: как приточную, так и вытяжную, и подготавливается к расчёту.
Размеры площади сечений воздуховодов определяются в зависимости от их типа: круглого или прямоугольного.
Формирование схемы
Схема составляется в аксонометрии с масштабом 1:100. На ней указываются пункты с расположенными вентиляционными устройствами и потреблением воздуха, проходящего через них.
Здесь следует определиться с магистралью – основной линией исходя из которой проводятся все операции. Она представляет собой цепь последовательно соединённых отрезков, с наибольшей нагрузкой и максимальной протяжённостью.
Здесь следует определиться с магистралью – основной линией исходя из которой проводятся все операции. Она представляет собой цепь последовательно соединённых отрезков, с наибольшей нагрузкой и максимальной протяжённостью.
Выстраивая магистраль, следует обратить внимание на то какая система проектируется: приточная или вытяжная.
Приточная
Здесь линия расчёта выстраивается от самого удалённого распределителя воздуха с наибольшим потреблением. Она проходит через такие приточные элементы, как воздуховоды и вентиляционная установка вплоть до места где происходит забор воздуха. Если же система должна обслуживать несколько этажей, то распределитель воздуха располагают на последнем.
Вытяжная
Строится линия от самого удалённого вытяжного устройства, максимально расходующего воздушный поток, через магистраль до установки вытяжки и дальше до шахты, через которую осуществляется выброс воздуха.
Если планируется вентиляция для нескольких уровней и установка вытяжки располагается на кровле или чердаке, то линия расчёта должна начинаться с воздухораспределительного устройства самого нижнего этажа или подвала, который тоже входит в систему. Если установка вытяжки находится в подвальном помещении, то от воздухораспределительного устройства последнего этажа.
Вся линия расчёта разбивается на отрезки, каждый из них представляет собой участок воздуховода со следующими характеристиками:
- воздуховод единого размера сечения;
- из одного материала;
- с постоянным потреблением воздуха.
Следующим шагом является нумерация отрезков. Начинается она с наиболее удалённого вытяжного устройства или распределителя воздуха, каждому присваивается отдельный номер. Основное направление – магистраль выделяется жирной линией.
Далее, на основе аксонометрической схемы для каждого отрезка определяется его протяжённость с учётом масштаба и потребления воздуха. Последний представляет собой сумму всех величин потребляемого воздушного потока, протекающего через ответвления, которые примыкают к магистрали. Значение показателя, который получается в результате последовательного суммирования, должно постепенно возрастать.
Определение размерных величин сечений воздуховодов
Производится исходя из таких показателей, как:
- потребление воздуха на отрезке;
- нормативные рекомендуемые значения скорости движения воздушного потока составляют: на магистралях — 6м/с, на шахтах где происходит забор воздуха – 5м/с.
Рассчитывается предварительное размерная величина воздуховода на отрезке, которая приводится к ближайшему стандартному. Если выбирается прямоугольный воздуховод, то значения подбираются на основе размеров сторон, отношение между которыми составляет не более чем 1 к 3.
Расчет вытяжной вентиляции
Расчет вытяжной вентиляции выполняется после расчета приточной вентиляции и основывается на обеспечении баланса приточного и вытяжного воздуха на объекте. При расчете вытяжной вентиляции выделяют помещения, требующие отдельных вытяжных систем. В частности, отдельная вытяжка предусматривается для санузлов и душевых. При этом закладывается вытяжка в размере 50 м3/ч на каждый унятых, 25 м3/ч на каждый писсуар и 75 м3/ч на каждую душевую комнату. Также отдельная вытяжка предусматривается для кухонь и помещений для приготовления пищи. Вытяжка из кухонь зависит от типа плиты и составляет, как правило, 90 м3/ч. Если речь идет о кухонных помещениях кафе и ресторанов, то от специального кухонного оборудования следует предусматривать местные отсосы в соответствии с заданием на проектирование. Расчет вытяжной вентиляции офисных помещений ведется исходя из обеспечения положительного 20-процентного дисбаланса. Так, если приток в офисное помещение на 10 рабочих мест и 5 посетителей составляет 700 м3/ч, то расход вытяжного воздуха следует принять 560 м3/ч. Отдельной задачей является сведение расходов приточной и вытяжной систем вентиляции и обеспечение их равенства для объекта в целом. Для расчета и проектирования вентиляции для конкретных объектов обращайтесь в ИС «Эколайф». Наши инженеры помогут вам сделать правильную вентиляцию для объектов любого типа.
К оглавлению
Этап второй
Здесь рассчитываются аэродинамические показатели сопротивления. После выбора стандартных сечений воздуховодов уточняется величина скорости воздушного потока в системе.
Расчёт потерь давления на трение
Следующим шагом является определение удельных потерь давления на трение исходя из табличных данных или номограмм. В ряде случаев может пригодиться калькулятор для определения показателей на основе формулы, позволяющей произвести расчёт с погрешностью в 0,5 процента. Для вычисления общего значения показателя, характеризующего потери давления на всём участке, нужно его удельный показатель умножить на длину. На этом этапе также следует учитывать поправочный коэффициент на шероховатость. Он зависит от величины абсолютной шероховатости того или иного материала воздуховода, а также скорости.
Вычисление показателя динамического давления на отрезке
Здесь определяют показатель, характеризующий динамическое давление на каждом участке исходя из значений:
- скорости воздушного потока в системе;
- плотности воздушной массы в стандартных условиях, которая составляет 1,2 кг/м3.
Определение значений местных сопротивлений на участках
Их можно рассчитать исходя из коэффициентов местного сопротивления. Полученные значения сводят в табличной форме, в которую включаются данные всех участков, причём не только прямые отрезки, но и по несколько фасонных частей. Название каждого элемента заносится в таблицу, там же указываются соответствующие значения и характеристики, по которым определяется коэффициент местного сопротивления. Эти показатели можно найти в соответствующих справочных материалах по подбору оборудования для вентиляционных установок.
При наличии большого количества элементов в системе или при отсутствии определённых значений коэффициентов используется программа, которая позволяет быстро осуществить громоздкие операции и оптимизировать расчёт в целом. Общая величина сопротивления определяется как сумма коэффициентов всех элементов отрезка.
Вычисление потерь давления на местных сопротивлениях
Рассчитав итоговую суммарную величину показателя, переходят к вычислению потерь давления на анализируемых участках. После расчёта всех отрезков основной линии полученные числа суммируют и определяют общее значение сопротивления вентиляционной системы.
Основные формулы аэродинамического расчета
Первым делом необходимо сделать аэродинамический расчет магистрали. Напомним что магистральным воздуховодом считается наиболее длинный и нагруженный участок системы. За результатами этих вычислений и подбирается вентилятор.
Рассчитывая магистральную ветвь желательно, чтобы скорость в воздуховоде увеличивалась по ходу приближения к вентилятору!
Только не забывайте об увязке остальных ветвей системы. Это важно! Если нет возможности произвести увязку на ответвлениях воздуховодов в пределах 10% нужно применять диафрагмы. Коэффициент сопротивления диафрагмы рассчитывается за формулой:
Если неувязка будет больше 10%, когда горизонтальный воздуховод входит в вертикальный кирпичный канал в месте стыковки необходимо разместить прямоугольные диафрагмы.
Основная задача расчета состоит из нахождения потерь давления. Подбирая при этом оптимальный размер воздуховодов и контролирую скорость воздуха. Общие потери давления представляют собой сумму двух компонентов — потерь давления по длине воздуховодов (на трение) и потерь в местных сопротивлениях. Расчитываются они по формулам
Эти формулы правильны для стальных воздуховодов, для всех остальных вводится коэффициент поправки. Он берется из таблицы в зависимости от скорости и шероховатости воздуховодов.
Для прямоугольных воздухопроводов расчетной величиной принимается эквивалентный диаметр.
Рассмотрим последовательность аэродинамического расчета воздуховодов на примере офисов , приведенных в предыдущей статье, по формулам. А затем покажем как он выглядит в программке Excel.
Пример расчета
По расчетам в кабинете воздухообмен составляет 800 м3/час. Задание было запроектировать воздуховоды в кабинетах не больше 200 мм высотой. Размеры помещения даны заказчиком. Воздух подается при температуре 20°С, плотность воздуха 1,2 кг/м3.
Проще будет если результаты заносить в таблицу такого вида
Сначала мы сделаем аэродинамический расчет главной магистрали системы. Теперь все по-порядку:
- Разбиваем магистраль на участки по приточным решеткам. У нас в помещении восемь решеток, на каждую приходится по 100 м3/час. Получилось 11 участков. Вводим расход воздуха на каждом участке в таблицу.
- Записываем длину каждого участка.
- Рекомендуемая максимальная скорость внутри воздуховода для офисных помещений до 5 м/с. Поэтому подбираем такой размер воздуховода, чтобы скорость увеличивалась по мере приближения к вентиляционному оборудованию и не превышала максимальную. Это делается для избежания шума в вентиляции . Возьмем для первого участка берем воздуховод 150х150, а для последнего 800х250.
V1=L/3600F =100/(3600*0,023)=1,23 м/с.
V11= 3400/3600*0,2= 4,72 м/с
Нас результат устраивает. Определяем размеры воздуховодов и скорость по этой формуле на каждом участке и вносим в таблицу.
Этап третий: увязка ответвлений
Когда проведены все необходимые расчёты необходимо произвести увязку нескольких ответвлений. Если система обслуживает один уровень, то увязывают ответвления не входящие в магистраль. Расчёт проводят в том же порядке, что и для основной линии. Результаты заносятся в таблицу. В многоэтажных зданиях для увязки используются поэтажные ответвления на промежуточных уровнях.
Критерии увязки
Здесь сопоставляются значения суммы потерь: давления по увязываемым отрезкам с параллельно присоединённой магистралью. Необходимо чтобы отклонение составляло не более 10 процентов. Если установлено, что расхождение больше, то увязку можно проводить:
- путём подбора соответствующих размеров сечения воздуховодов;
- при помощи установки на ответвлениях диафрагм или дроссельных клапанов.
Иногда для проведения подобных расчётов необходим всего лишь калькулятор и пара справочников. Если же требуется провести аэродинамический расчёт вентиляции больших зданий или производственных помещений, то понадобится соответствующая программа. Она позволит быстро определить размеры сечений, потери давления как на отдельных отрезках, так и во всей системе в целом.
Проектирование систем вентиляции.
Главное требование ко всем типам систем вентиляции – обеспечивать оптимальную кратность обмена воздуха в помещениях или конкретных рабочих зонах. С учетом этого параметра проектируется внутренний диаметр воздуховода и подбирается мощность вентилятора. Для того чтобы гарантировать требуемую эффективность функционирования системы вентиляции, выполняется расчет потерь давления напора в воздуховодах, эти данные принимаются во внимание во время определения технических характеристик вентиляторов. Показатели рекомендуемой скорости воздушного потока указаны в таблице № 1.
Алгоритм расчета потерь напора воздуха
Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.
Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.
Табл. № 2. Эквивалентные диаметры круглых воздуховодов для квадратных
По горизонтали указана высота квадратного воздуховода, а по вертикали ширина. Эквивалентное значение круглого сечения находится на пересечении линий.
По горизонтали указана высота квадратного воздуховода, а по вертикали ширина. Эквивалентное значение круглого сечения находится на пересечении линий.
Потери давления воздуха в изгибах берутся из таблицы № 3.
Расчет естественной вентиляции
Расчет естественной вентиляции ведется исхода из разности давлений на разных высотах атмосферы. По сути, вертикальный участок воздуховода соединяет между собой точки с разным атмосферным давлением, за счет чего естественным образом образуется тяга. Движущее воздух давление определяется по формуле: Р=(Рвн–Рн)·h·g, где Рвн – плотность внутреннего воздуха (кг/м3), Рн – плотность наружного воздуха (кг/м3), h – высота естественной вытяжки (м), g — ускорение свободного падения, равное 9,81 м/с2. Фактически, это давление приравнивается к аэродинамическому сопротивлению рассматриваемого вертикального участка воздуховода. Далее по полученному аэродинамическому сопротивлению для данного воздуховода определяется соответствующий ему расход воздуха.
К оглавлению