Делаем вместе теплогенератор своими руками


Устройство и принцип работы

Принцип действия кавитационного теплогенератора заключается в эффекте нагрева за счет преобразования механической энергии в тепловую. Теперь более детально рассмотрим само кавитационное явление. При создании избыточного давления в жидкости возникают завихрения, из-за того, что давление жидкости больше чем у содержащегося в ней газа, молекулы газа выделяются в отдельные включения – схлопывание пузырьков. За счет разности давления вода стремиться сжать газовый пузырь, что аккумулирует на его поверхности большое количество энергии, а температура внутри достигает порядка 1000 — 1200ºС.

При переходе кавитационных полостей в зону нормального давления пузырьки разрушаются, и энергия от их разрушения выделяется в окружающее пространство. За счет чего происходит выделение тепловой энергии, а жидкость нагревается от вихревого потока. На этом принципе основана работа тепловых генераторов, далее рассмотрите принцип работы простейшего варианта кавитационного обогревателя.

Простейшая модель


Рис. 1: Принцип работы кавитационного теплогенератора
Посмотрите на рисунок 1, здесь представлено устройство простейшего кавитационного теплогенератора, который заключается в нагнетании насосом воды к месту сужения трубопровода. При достижении водяным потоком сопла давление жидкости значительно возрастает и начинается образование кавитационных пузырьков. При выходе из сопла пузырьки выделяют тепловую мощность, а давление после прохождения сопла значительно снижается. На практике может устанавливаться несколько сопел или трубок для повышения эффективности.

Идеальный теплогенератор Потапова

Идеальным вариантом установки считается теплогенератор Потапова, который имеет вращающийся диск (1) установленный напротив стационарного (6). Подача холодной воды осуществляется с трубы расположенной внизу (4) кавитационной камеры (3), а отвод уже нагретой с верхней точки (5) той же камеры. Пример такого устройства приведен на рисунке 2 ниже:


Рис. 2: кавитационный теплогенератор Потапова

Но широкого распространения устройство не получило из-за отсутствия практического обоснования его работы.

Виды

Основная задача кавитационного теплогенератора – образование газовых включений, а от их количества и интенсивности будет зависеть качество нагрева. В современной промышленности существует несколько видов таких теплогенераторов, отличающихся принципом выработки пузырьков в жидкости. Наиболее распространенными являются три вида:

  • Роторные теплогенераторы – рабочий элемент вращается за счет электропривода и вырабатывает завихрения жидкости;
  • Трубчатые – изменяют давление за счет системы труб, по которым движется вода;
  • Ультразвуковые – неоднородность жидкости в таких теплогенераторах создается за счет звуковых колебаний низкой частоты.

Помимо вышеперечисленных видов существует лазерная кавитация, но промышленной реализации этот метод еще не нашел. Теперь рассмотрим каждый из видов более детально.

Роторный теплогенератор

Состоит из электрического двигателя, вал которого соединен с роторным механизмом, предназначенным для создания завихрений в жидкости. Особенностью роторной конструкции является герметичный статор, в котором и происходит нагревание. Сам статор имеет цилиндрическую полость внутри – вихревую камеру, в которой происходит вращение ротора. Ротор кавитационного теплогенератора представляет собой цилиндр с набором углублений на поверхности, при вращении цилиндра внутри статора эти углубления создают неоднородность в воде и обуславливают протекание кавитационных процессов.


Рис. 3: конструкция генератора роторного типа

Количество углублений и их геометрические параметры определяются в зависимости от модели вихревого теплогенератора. Для оптимальных параметров нагрева расстояние между ротором и статором составляет порядка 1,5мм. Данная конструкция является не единственной в своем роде, за долгую историю модернизаций и улучшений рабочий элемент роторного типа претерпел массу преобразований.

Одной первых эффективных моделей кавитационных преобразователей был генератор Григгса, в котором использовался дисковый ротор с несквозными отверстиями на поверхности. Один из современных аналогов дисковых кавитационных теплогенераторов приведен на рисунке 4 ниже:


Рис. 4: дисковый теплогенератор

Несмотря на простоту конструкции, агрегаты роторного типа достаточно сложные в применении, так как требуют точной калибровки, надежных уплотнений и соблюдения геометрических параметров в процессе работы, что обуславливает трудности их эксплуатации. Такие кавитационные теплогенераторы характеризуются достаточно низким сроком службы – 2 — 4 года из-за кавитационной эрозии корпуса и деталей. Помимо этого они создают достаточно большую шумовую нагрузку при работе вращающегося элемента. К преимуществам такой модели относится высокая продуктивность – на 25% выше, чем у классических нагревателей.

Трубчатые

Статический теплогенератор не имеет вращающихся элементов. Нагревательный процесс в них происходит за счет движения воды по трубам, сужающимся по длине или за счет установки сопел Лаваля. Подача воды на рабочий орган осуществляется гидродинамическим насосом, который создает механическое усилие жидкости в сужающемся пространстве, а при ее переходе в более широкую полость возникают кавитационные завихрения.

В отличии от предыдущей модели трубчатое отопительное оборудование не производит большого шума и не изнашивается так быстро. При установке и эксплуатации не нужно заботиться о точной балансировке, а при разрушении нагревательных элементов их замена и ремонт обойдутся куда дешевле, чем у роторных моделей. К недостаткам трубчатых теплогенераторов относят значительно меньшую производительность и громоздкие габариты.

Ультразвуковые

Данный тип устройства имеет камеру-резонатор, настроенную на определенную частоту звуковых колебаний. На ее входе устанавливается кварцевая пластина, которая производит колебания при подаче электрических сигналов. Вибрация пластины создает волновой эффект внутри жидкости, который достигая стенок камеры-резонатора и отражается. При возвратном движении волны встречаются с прямыми колебаниями и создают гидродинамическую кавитацию.


Рис. 5: принцип работы ультразвукового теплогенератора

Далее пузырьки уносятся водным потоком по узким входным патрубкам тепловой установки. При переходе в широкую область пузырьки разрушаются, выделяя тепловую энергию. Ультразвуковые кавитационные генераторы также обладают хорошими эксплуатационными показателями, так как не имеют вращающихся элементов.

Изготовление гидродинамического контура

После того как мы определились с конструкцией сопла переходим к следующему этапу: изготовлению гидродинамического контура. Для этого предварительно следует набросать схему контура. Мы сделали это очень просто, нарисовав схему на полу мелом (см. рис. 13)

Рисунок 13 – Схема собранного нами теплогенератора.

  1. Манометр на выходе из сопла(измеряет давление на выходе из сопла).
  2. Термометр(измеряет температуру на входе в систему).
  3. Кран для сброса воздуха(Удаляет воздушную пробку из системы).
  4. Выходной патрубок с краном.
  5. Гильза под термометр.
  6. Входной парубок с краном.
  7. Гильза под термометр на входе.
  8. Манометр на входе в сопло(измеряет давление на входе в систему).

Теперь я опишу устройство контура. Он представляет собой трубопровод, вход которого соединен с выходным патрубком насоса, а выход – с входным. В этот трубопровод вваривается сопло 9 , патрубки для подключения манометров 8 (до и после сопла), гильзы для установки термометр 7,5 (мы не стали вваривать резьбы под гильзы, а просто вварили их), штуцер под вентиль для сброса воздуха 3 (мы применили обыкновенный шаркран, сгоны под регулирующий вентиль и штуцера для подключения отопительного контура.

На нарисованной мною схеме вода движется против часовой стрелки. Подача воды в контур осуществляется через нижний патрубок (шаркран с красным маховиком и обратным клапаном), а выдача воды из него, соответственно через верхний (шаркран с красным маховиком). Регулирование перепада давления осуществляется вентилем, который находится между входным и выходным патрубками. На фото рис. 13 он только изображен на схеме и не лежит рядом со своим обозначением, т.к. мы его уже накрутили на сгоны, предварительно намотав уплотнение (см. рис. 14).

Рисунок 14 – Заготовки для сборки гидродинамического контура.

Для изготовления контура мы взяли трубу Ду 50, т.к. присоединительные патрубки насоса имеют такой же диаметр. При этом входной и выходной патрубок контура, к которым подключается отопительный контур, мы изготовили из трубы Ду 20. То что у нас получилось в итоге вы можете увидеть на рис. 15.

Рисунок 15 – Собранный гидродинамический контур.

На фото показан насос с двигателем 1 кВт. Впоследствии, мы заменили его на насос мощностью 5,5 кВт, описанный выше.

Вид, конечно, получился не самый эстетичный, но мы и не ставили перед собой такую задачу. Возможно, кто-то из читателей спросит, зачем такие размеры контура, ведь можно сделать его меньше? Мы предполагаем за счет длины трубы перед соплом несколько разогнать воду. Если вы покопаетесь в интернете, то наверняка найдете изображения и схемы первых моделей теплогенераторов. Практически все они работали без сопел. Эффект нагрева жидкости достигался за счет ее разгона до довольно больших скоростей. Для этого применялись цилиндры небольшой высоты стангенциальным входом и коаксиальным выходом.

Мы не стали для ускорения воды применять такой метод, а решили сделать свою конструкцию как можно более простой. Хотя у нас есть мысли о том, как ускорить жидкость при такой конструкции контура, но об этом позже.

На фото еще не вкрученманометр перед соплом и переходник с гильзой для термометра, который монтируется перед водомером(на тот момент он еще не был готов). Осталось установить недостающие элементы и приступать к следующему этапу.

О том, как подключать электродвигатель насоса и радиатор отопления, думаю, нет смысла рассказывать. Хотя к вопросу подключения электродвигателя мы подошли не совсем стандартно. Поскольку в домашних условиях обычно используется однофазная сеть, а промышленные насосы выпускаются с трехфазным двигателем, мы решили применить частотный преобразователь,рассчитанный на однофазную сеть. Это позволило, к тому же, поднять скорость вращения насоса выше 3000 об./мин. и в дальнейшем найти резонансную частоту вращения насоса.

Для параметрирования преобразователя частоты нам потребуется ноутбук с COM портом для параметрирования и управления частотным преобразователем. Сам преобразователь устанавливается в шкафу управления, где предусмотрен обогрев в зимних условиях эксплуатации и вентиляция для летних условий эксплуатации. Для вентиляции шкафа мы воспользовались стандартным вентилятором, а для обогрева шкафа используется нагреватель, мощностью 20 Вт.

Частотный преобразователь позволяет регулировать частоту насоса в широких пределах как ниже основной, так и выше основной. Поднимать частоту двигателя можно не выше 150%.

В нашем случае можно поднимать скорость вращения двигателя до 4500 об/мин.

Можно кратковременно поднимать частоту и выше до 200%, но это ведет к механической перегрузке двигателя и повышает вероятность его выхода из строя. Кроме того, с помощью частотного преобразователя осуществляется защита двигателя от перегрузки и короткого замыкания. Также частотный преобразователь позволяет производить запуск двигателя с заданным временем разгона, что ограничивает ускорение лопастей насоса при запуске и ограничивает пусковые токи двигателя. Смонтирован частотный преобразователь в настенном шкафу (см. рис. 16).

Рисунок 16 – Шкаф управления Частотным преобразователем.

Все органы управления и элементы индикации выведены на лицевую панель шкафа управления. На лицевую панель (на прибор МТМ-РЭ-160) выведены параметры работы системы.

Прибор имеет возможность записи в течение суток показаний 6 различных каналов аналоговых сигналов. В данном случае, мы записываем показания температуры на входе системы, показания температуры на выходе системы и параметры давления на входе и выходе системы.

Задание на величину числа оборотов основного насоса ведется с помощью приборов МТМ-103 зеленая и желтые кнопки используются для запуска и остановки двигателей рабочего насоса теплогенератора и циркуляционного насоса. Циркуляционный насос мы планируем использовать для снижения потребления электроэнергии. Ведь, когда вода нагреется до установленной температуры, циркуляция все равно необходима.

Рисунок 17– Лицевая панель управления теплогенератором.

При использовании преобразователя частоты Micromaster 440 , для параметрирования преобразователя можно использовать специальную программу Starter , установив ее на ноутбук (см рис. 18).

Рисунок 18 – Ноутбук с установленной программой управления частотным преобразователем.

Вначале в программу заносятся исходные данные двигателя, написанные на шильдике( табличке с заводскими параметрами двигателя, прикрепленной к статору двигателя) К таким данным относятся

  • Номинальная Мощность Р кВт,
  • Номинальный ток I ном.,
  • Косинус,
  • Тип двигателя,
  • Номинальная частота вращения N ном.

После этого запускается автоопределение двигателя и частотный преобразователь сам определяет необходимые параметры двигателя. После этого насос готов к работе.

Применение

В промышленности и в быту кавитационные теплогенераторы нашли реализацию в самых различных сферах деятельности. В зависимости от поставленных задач они применяются для:

  • Отопления – внутри установок происходит преобразование механической энергии в тепловую, благодаря чему нагретая жидкость двигается по системе отопления. Следует отметить, что кавитационные теплогенераторы могут отапливать не только промышленные объекты, но и целые поселки.
  • Нагревание проточной воды – кавитационная установка способна быстро нагревать жидкость, за счет чего может легко заменять газовую или электрическую колонку.
  • Смешение жидких веществ – за счет разрежения в слоях с получением мелких полостей такие агрегаты позволяют добиться надлежащего качества перемешивания жидкостей, которые естественным образом не совмещаются из-за разной плотности.

Плюсы и минусы

В сравнении с другими теплогенераторами, кавитационные агрегаты отличаются рядом преимуществ и недостатков.

К плюсам таких устройств следует отнести:

  • Куда более эффективный механизм получения тепловой энергии;
  • Расходует значительно меньше ресурсов, чем топливные генераторы;
  • Может применяться для обогрева как маломощных, так и крупных потребителей;
  • Полностью экологичен – не выделяет в окружающую среду вредных веществ во время работы.

К недостаткам кавитационных теплогенераторов следует отнести:

  • Сравнительно большие габариты – электрические и топливные модели имеют куда меньшие размеры, что немаловажно при установке в уже эксплуатируемом помещении;
  • Большая шумность за счет работы водяного насоса и самого кавитационного элемента, что затрудняет его установку в бытовых помещениях;
  • Неэффективное соотношение мощности и производительности для помещений с малой квадратурой (до 60м2 выгоднее использовать установку на газу, жидком топливе или эквивалентной электрической мощности с нагревательным тэном).\

Роторный теплогенератор

Что же из себя представляет роторный теплогенератор? По сути – это несколько измененный центробежный насос, То есть имеется корпус насоса (который в данном случае является статором) с входным и выходным патрубками, и рабочей камерой, внутри которого находится ротор, выполняющий роль рабочего колеса. Главное отличие от обычного насоса заключается именно в роторе. Существует великое множество конструктивных исполнений роторов вихревых теплогенераторов, и все описывать мы конечно не будем. Самый простой из них представляет собой диск, на цилиндрической поверхности которого просверлено множество глухих отверстий определенной глубины и диаметра. Эти отверстия называют ячейками Григгса, по имени американского изобретателя, первыми испытавшего роторный теплогенератор такой конструкции. Количество и размеры этих ячеек определяется исходя из размеров диска ротора и частоты вращения электродвигателя, приводящего его во вращение. Статор (он же корпус теплогенератора), как правило, выполнен в виде полого цилиндра, т.е. труба, заглушенная с обеих сторон фланцами При этом зазор между внутренней стенкой статора и ротором весьма мал и составляет 1…1,5 мм.

В зазоре между ротором и статором и происходит нагрев воды. Этому способствует ее трение о поверхности статора и ротора, при быстром вращении последнего. Ну и конечно значительную роль в нагреве воды играют кавитационные процессы и завихрения воды в ячейках ротора. Скорость вращения ротора, как правило, составляет 3000 об/мин при его диаметре 300 мм. С уменьшением диаметра ротора необходимо увеличивать частоту вращения.

Не трудно догадаться, что при всей простоте такая конструкция требует довольно высокой точности изготовления. И очевидно, что потребуется балансировка ротора. К тому же приходится решать вопрос уплотнения вала ротора. Естественно уплотнительные элементы требуют регулярной замены.

Из выше сказанного следует, что ресурс подобных установок не так уж и велик. По мимо всего прочего, работа роторных теплогенераторов сопровождается повышенным шумом. Хотя они обладают большей на 20-30% производительностью в сравнении с теплогенераторами статического типа. Теплогенераторы роторного типа способны даже вырабатывать пар. Но является ли это преимуществом при непродолжительном сроке эксплуатации (в сравнении со статическими моделями)?

КТГ своими руками

Наиболее простым вариантом для реализации в домашних условиях является кавитационный генератор трубчатого типа с одним или несколькими соплами для нагревания воды. Поэтому разберем пример изготовления именно такого устройства, для этого вам понадобится:

  • Насос – для нагревания обязательно выбирайте тепловой насос, который не боится постоянного воздействия высоких температур. Он должен обеспечивать рабочее давление на выходе в 4 – 12атм.
  • 2 манометра и гильзы для их установки – размещаются с двух сторон от сопла для измерения давления на входе и выходе из кавитационного элемента.
  • Термометр для измерения величины нагрева теплоносителя в системе.
  • Клапан для удаления лишнего воздуха из кавитационного теплогенератора. Устанавливается в самой верхней точке системы.
  • Сопло – должно иметь диаметр проходного отверстия от 9 до 16мм, делать меньше не рекомендуется, так как кавитация может возникнуть уже в насосе, что значительно снизит срок его эксплуатации. По форме сопло может быть цилиндрическим, коническим или овальным, с практической точки зрения вам подойдет любое.
  • Трубы и соединительные элементы (радиаторы отопления при их отсутствии ) – выбираются в соответствии с поставленной задачей, но наиболее простым вариантом являются пластиковые трубы под пайку.
  • Автоматика включения/отключения кавитационного теплогенератора – как правило, подвязывается под температурный режим, устанавливается на отключение примерно при 80ºС и на включение при снижении менее 60ºС. Но режим работы кавитационного теплогенератора вы можете выбрать самостоятельно.


Рис. 6: схема кавитационного теплогенератора
Перед соединением всех элементов желательно нарисовать схему их расположения на бумаге, стенах или на полу. Места расположения необходимо размещать вдали от легковоспламеняемых элементов или последние нужно убрать на безопасное расстояние от системы отопления.

Соберите все элементы, как вы изобразили на схеме, и проверьте герметичность без включения генератора. Затем опробуйте в рабочем режиме кавитационного теплогенератора, нормальным нарастанием температуры жидкости считается 3- 5ºС за одну минуту.

Теплогенератор своими руками (видео)

Кавитационный нагреватель достаточно интересный и экономный способ обогреть помещение. Он легко доступен и при желании может создаваться самостоятельно. Для этого нужно докупить необходимые материалы и сделать все в соответствии со схемами. И эффективность аппарата не заставит себя долго ждать.

Для отопления помещений или нагрева жидкостей зачастую применяются классические приспособления – тэны, камеры сгорания, нити накаливания и т.д. Но наряду с ними применяются устройства с принципиально иным типом воздействия на теплоноситель. К таким устройствам относится кавитационный теплогенератор, работа которого заключается в формировании пузырьков газа, за счет которых и возникает выделение тепла.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]