Способы определения нагрузки
Сначала поясним значение термина. Тепловая нагрузка – это общее количество теплоты, расходуемое системой отопления на обогрев помещений до нормативной температуры в наиболее холодный период. Величина исчисляется единицами энергии – киловаттами, килокалориями (реже – килоджоулями) и обозначается в формулах латинской буквой Q.
Зная нагрузку на отопление частного дома в целом и потребность каждого помещения в частности, нетрудно подобрать котел, обогреватели и батареи водяной системы по мощности. Как можно рассчитать данный параметр:
- Если высота потолков не достигает 3 м, производится укрупненный расчет по площади отапливаемых комнат.
- При высоте перекрытий 3 м и более расход тепла считается по объему помещений.
- Определение теплопотерь через внешние ограждения и затрат на подогрев вентиляционного воздуха согласно СНиП.
Примечание. В последние годы широкую популярность обрели онлайн-калькуляторы, размещаемые на страницах различных интернет-ресурсов. С их помощью определение количества тепловой энергии выполняется быстро и не требует дополнительных инструкций. Минус – достоверность результатов нужно проверять, ведь программы пишут люди, не являющиеся теплотехниками.
Фото здания, сделанное с помощью тепловизора
Две первые расчетные методики основаны на применении удельной тепловой характеристики по отношению к обогреваемой площади либо объему здания. Алгоритм простой, используется повсеместно, но дает весьма приближенные результаты и не учитывает степень утепления коттеджа.
Считать расход тепловой энергии по СНиП, как делают инженеры–проектировщики, гораздо сложнее. Придется собрать множество справочных данных и потрудиться над вычислениями, зато конечные цифры отразят реальную картину с точностью 95%. Мы постараемся упростить методику и сделать расчет нагрузки на отопление максимально доступным для понимания.
Виды тепловых нагрузок для расчетов
При осуществлении расчетов и выборе оборудования во внимание принимают разные тепловые нагрузки:
- Сезонные нагрузки
. имеющие следующие особенности:
— им присущи изменения в зависимости от температуры окружающего воздуха на улице; — наличие отличий в величине расхода тепловой энергии в соответствии с климатическими особенностями региона местонахождения дома; — изменение нагрузки на отопительную систему в зависимости от времени суток. Поскольку наружные ограждения имеют теплостойкость, данный параметр считается незначительным; — расходы тепла вентиляционной системы в зависимости от времени суток.
Постоянные тепловые нагрузки
. В большинстве объектов системы теплоснабжения и горячего водоснабжения они используются на протяжении года. Например, в теплое время года расходы тепловой энергии в сравнении с зимним периодом снижаются где-то на 30-35%.
Сухое тепло
. Представляет собой тепловое излучение и конвекционный теплообмен за счет иных подобных устройств. Определяют данный параметр при помощи температуры сухого термометра. Он зависит от многих факторов, среди которых окна и двери, системы вентиляции, различное оборудование, воздухообмен, происходящий за счет наличия щелей в стенах и перекрытиях. Также учитывают количество людей, присутствующих в помещении.
Скрытое тепло
. Образуется в результате процесса испарения и конденсации. Температура определяется при помощи влажного термометра. В любом по назначению помещении на уровень влажности влияют:
— численность людей, одновременно находящихся в помещении; — наличие технологического или другого оборудования; — потоки воздушных масс, проникающих сквозь щели и трещины, имеющиеся в ограждающих конструкциях здания.
Для примера – проект одноэтажного дома 100 м²
Чтобы доходчиво пояснить все способы определения количества тепловой энергии, предлагаем взять в качестве примера одноэтажный дом общей площадью 100 квадратов (по наружному обмеру), показанный на чертеже. Перечислим технические характеристики здания:
- регион постройки – полоса умеренного климата (Минск, Москва);
- толщина внешних ограждений – 38 см, материал – силикатный кирпич;
- наружное утепление стен – пенопласт толщиной 100 мм, плотность – 25 кг/м³;
- полы – бетонные на грунте, подвал отсутствует;
- перекрытие – ж/б плиты, утепленные со стороны холодного чердака пенопластом 10 см;
- окна – стандартные металлопластиковые на 2 стекла, размер – 1500 х 1570 мм (h);
- входная дверь – металлическая 100 х 200 см, изнутри утеплена экструдированным пенополистиролом 20 мм.
В коттедже устроены межкомнатные перегородки в полкирпича (12 см), котельная располагается в отдельно стоящей постройке. Площади комнат обозначены на чертеже, высоту потолков будем принимать в зависимости от поясняемой расчетной методики – 2.8 либо 3 м.
Для чего все это нужно
Проблему следует рассмотреть с двух точек зрения – с точки зрения многоквартирных домов и частных. Начнем с первых.
Многоквартирные здания
Здесь ничего сложного нет: гигакалории применяются в тепловых расчетах. И если знать, какое количество тепловой энергии остается в доме, то можно предъявить потребителю конкретный счет. Приведем небольшое сравнение: если централизованное отопление будет функционировать в отсутствие счетчика, то платить приходится по площади обогреваемого помещения. Если же есть тепловой счетчик, это уже само по себе разводку подразумевает горизонтального типа (либо коллекторную, либо последовательную): в квартиру заводят два стояка (для «обратки» и подачи), а уже внутриквартирная система (точнее, е конфигурация) определяется жильцами. Подобного рода схема применяются в новостройках, благодаря чему люди регулируют расход тепловой энергии, делая выбор между экономией и комфортом.
Выясним, каким образом осуществляется данная регулировка.
1. Монтаж общего термостата на магистрали «обратки». В таком случае расход рабочей жидкости определяется температурой внутри квартиры: если она будет снижаться, то расход, соответственно, увеличится, а если повышаться – снизится.
2. Дросселирование радиаторов отопления. Благодаря дросселю проходимость отопительного прибора ограничивается, температура снижается, а значит, сокращается расход тепловой энергии.
Частные дома
Продолжаем говорить про расчет Гкал на отопление. Владельцы загородных домов интересуются, прежде всего, стоимостью гигакалории тепловой энергии, полученной от того или иного вида топлива. В этом может помочь приведенная ниже таблица.
Таблица. Сравнение стоимости 1 Гкал (с учетом транспортных расходов)
* — цены примерные, так как тарифы могут отличаться в зависимости от региона, более того, они еще и постоянно растут.
Считаем расход теплоты по квадратуре
Для приблизительной прикидки отопительной нагрузки обычно используется простейший тепловой расчет: берется площадь здания по наружному обмеру и умножается на 100 Вт. Соответственно, потребление тепла дачным домиком 100 м² составит 10000 Вт или 10 кВт. Результат позволяет подобрать котел с коэффициентом запаса 1.2—1.3, в данном случае мощность агрегата принимается равной 12.5 кВт.
Мы предлагаем выполнить более точные вычисления, учитывающие расположение комнат, количество окон и регион застройки. Итак, при высоте потолков до 3 м рекомендуется использовать следующую формулу:
Расчет ведется для каждого помещения отдельно, затем результаты суммируются и умножаются на региональный коэффициент. Расшифровка обозначений формулы:
- Q – искомая величина нагрузки, Вт;
- Sпом – квадратура комнаты, м²;
- q – показатель удельной тепловой характеристики, отнесенный к площади помещения, Вт/м²;
- k – коэффициент, учитывающий климат в районе проживания.
Для справки. Если частный дом расположен в полосе умеренного климата, коэффициент k принимается равным единице. В южных регионах k = 0.7, в северных применяются значения 1.5—2.
В приближенном подсчете по общей квадратуре показатель q = 100 Вт/м². Подобный подход не учитывает расположение комнат и разное количество световых проемов. Коридор, находящийся внутри коттеджа, потеряет гораздо меньше тепла, чем угловая спальня с окнами той же площади. Мы предлагаем принимать величину удельной тепловой характеристики q следующим образом:
- для помещений с одной наружной стеной и окном (или дверью) q = 100 Вт/м²;
- угловые комнаты с одним световым проемом – 120 Вт/м²;
- то же, с двумя окнами – 130 Вт/м².
Как правильно подбирать значение q, наглядно показано на плане здания. Для нашего примера расчет выглядит так:
Q = (15.75 х 130 + 21 х 120 + 5 х 100 + 7 х 100 + 6 х 100 + 15.75 х 130 + 21 х 120) х 1 = 10935 Вт ≈ 11 кВт.
Как видите, уточненные вычисления дали другой результат – по факту на отопление конкретного домика 100 м² израсходуется на 1 кВт тепловой энергии больше. Цифра учитывает расход теплоты на подогрев наружного воздуха, проникающего в жилище сквозь проемы и стены (инфильтрацию).
Расчет норм по отоплению в квартире
В квартире, обслуживаемой коммунальным предприятием, расчет тепловой нагрузки может быть проведен только при передаче дома с целью отслеживания параметров СНИП в принимаемом на баланс помещении. В противном случае это делает владелец квартиры, чтобы рассчитать свои теплопотери в холодное время года и устранить недостатки утепления – использовать теплоизолирующую штукатурку, поклеить утеплитель, монтировать на потолках пенофол и установить металлопластиковые окна с пятикамерным профилем.
Расчет тепловых утечек для коммунальной службы с целью открытия спора, как правило, не дает результата. Причина в том, что существуют стандарты теплопотерь. Если дом введен в эксплуатацию, то требования выполнены. При этом приборы отопления соответствуют требованиями СНИП. Замена батарей и отбор большего количества тепла запрещен, так как радиаторы установлены по утвержденным строительным стандартам.
Вычисление тепловой нагрузки по объему комнат
Когда расстояние между полами и потолком достигает 3 м и более, предыдущий вариант расчета использовать нельзя – результат выйдет некорректным. В подобных случаях отопительную нагрузку принято считать по удельным укрупненным показателям расхода теплоты на 1 м³ объема помещения.
Формула и алгоритм вычислений остаются прежними, только параметр площади S меняется на объем – V:
Соответственно, принимается другой показатель удельного расхода q, отнесенный к кубатуре каждого помещения:
- комната внутри здания либо с одной внешней стеной и окном – 35 Вт/м³;
- помещение угловое с одним окном – 40 Вт/м³;
- то же, с двумя световыми проемами – 45 Вт/м³.
Примечание. Повышающие и понижающие региональные коэффициенты k применяются в формуле без изменений.
Теперь для примера определим нагрузку на отопление нашего коттеджа, взяв высоту потолков равной 3 м:
Q = (47.25 х 45 + 63 х 40 + 15 х 35 + 21 х 35 + 18 х 35 + 47.25 х 45 + 63 х 40) х 1 = 11182 Вт ≈ 11.2 кВт.
Заметно, что требуемая тепловая мощность системы отопления выросла на 200 Вт по сравнению с предыдущим расчетом. Если же принять высоту комнат 2.7—2.8 м и сосчитать затраты энергии через кубатуру, то цифры получатся примерно одинаковые. То есть, способ вполне применим для укрупненного подсчета теплопотерь в помещениях любой высоты.
Простые вычисления по площади
Вычислить величину батарей отопления для определенного помещения можно, ориентируясь на его площадь. Это самый простой способ – использовать сантехнические нормы, которые предписывают, что тепловой мощности 100 Вт в час нужно для обогрева 1 кв.м. Надо помнить, что этот метод используется для помещений, у которых потолки стандартной высоты (2,5-2,7 метра), а результат получается несколько завышенным. К тому же он не учитывает таких особенностей, как:
- число окон и тип стеклопакетов на них;
- количество в комнате наружных стен;
- толщина стен здания и из какого материала они состоят;
- тип и толщина использованного утеплителя;
- диапазон температур в данной климатической зоне.
Тепло, которое для обогрева комнаты должны давать радиаторы: площадь следует умножить на тепловую мощность (100 Вт). К примеру, для комнаты в 18 кв.м требуется такая мощность батареи отопления:
18 кв.м х 100 Вт = 1800 Вт
То есть, в час для обогрева 18-ти квадратных метров необходимо 1,8 кВт мощности. Этот результат надо поделить на количество тепла, которое в час выделяет секция отопительного радиатора. Если данные в его паспорте указывают, что это составляет 170 Вт, то следующий этап вычислений выглядит так:
1800 Вт / 170 Вт = 10,59
Это число надо округлить до целого (обычно округляется в большую сторону) – получится 11. То есть, чтобы в комнате температура в отопительный сезон была оптимальной, необходимо установить радиатор отопления с 11-ю секциями.
Такой метод подходит только для вычисления величины батареи в помещениях с центральным отоплением, где температура теплоносителя не выше 70 градусов Цельсия.
Есть и более простой способ, который можно применять для обычных условий квартир панельных домов. В этом приблизительном расчете учитывается, что для обогрева 1,8 кв.м площади нужна одна секция. Другими словами, площадь помещения надо разделить на 1,8. Например, при площади 25 кв.м необходимо 14 частей:
25 кв.м / 1,8 кв.м = 13,89
Но такой метод расчета неприемлем для радиатора пониженной или повышенной мощности (когда средняя отдача одной секции варьируется в пределах от 120 до 200 Вт).
Как воспользоваться результатами вычислений
Зная потребность здания в тепловой энергии, домовладелец может:
- четко подобрать мощность теплосилового оборудования для обогрева коттеджа;
- набрать нужное количество секций радиаторов;
- определить необходимую толщину утеплителя и выполнить теплоизоляцию здания;
- выяснить расход теплоносителя на любом участке системы и при необходимости выполнить гидравлический расчет трубопроводов;
- узнать среднесуточное и месячное потребление тепла.
Последний пункт представляет особый интерес. Мы нашли величину тепловой нагрузки за 1 час, но ее можно пересчитать на более продолжительный период и вычислить предполагаемый расход топлива — газа, дров или пеллет.
Как рассчитать нагрузку?
Показатель тепловой нагрузки определяется несколькими наиболее важными факторами, поэтому при выполнении расчётных мероприятий в обязательном порядке требуется учитывать:
- общую площадь остекления и количество дверей;
- разницу температурных режимов за пределами и внутри строения;
- уровень производительности, режим эксплуатации системы вентиляции;
- толщину конструкций и материалы, задействованные в возведении строения;
- свойства кровельного материала и основные конструктивные особенности крыши;
- величину инсоляции и степень поглощения солнечного тепла внешними поверхностями.
Практикуется применение нескольких способов вычисления тепловой нагрузки, которые заметно различаются не только степенью сложности, но и точностью полученных расчётных результатов. Важно предварительно собрать необходимые для проектирования и расчётных мероприятий сведения, касающиеся схемы установки радиаторов и места вывода ГВС, а также поэтажный план и экспликацию сооружения.
Расчет мощности системы отопления по площади жилья
Одним из наиболее быстрых и простых для понимания способов определения мощности отопительной системы является расчет по площади помещения. Подобный метод широко применяется продавцами нагревательных котлов и радиаторов. Расчет мощности системы отопления по площади происходит в несколько простых шагов.
Шаг 1.
По плану или уже возведенному зданию определяется внутренняя площадь постройки в квадратных метрах.
Шаг 2.
Полученная цифра умножается на 100-150 – именно столько ватт от общей мощности отопительной системы нужно на каждый м 2 жилья.
Шаг 3.
Затем результат умножается на 1,2 или 1,25 – это необходимо для создания запаса мощности, чтобы отопительная система была способна поддерживать комфортную температуру в доме даже в случае самых сильных морозов.
Шаг 4.
Вычисляется и записывается конечная цифра – мощность системы отопления в ваттах, необходимая для обогрева того или иного жилья. В качестве примера – для поддержания комфортной температуры в частном доме площадью 120 м 2 потребуется примерно 15 000 Вт.
Шаг 5.
По уже определенным расчетным данным подбирается конкретная модель нагревательного котла и радиаторов.
Самостоятельный расчёт тепловой мощности
Начало выполнения подготовки проекта отопления, как жилых загородных домов, так и производственных комплексов, следует с теплотехнического расчёта. В качестве источника тепла предполагается тепловая пушка.
Что представляет собой теплотехнический расчёт?
Расчёт тепловых потерь является основополагающим документом, призванным решать такую задачу, как организация теплоснабжения сооружения. Он определяет суточное и годовое потребление тепла, минимальную потребность жилого либо промышленного объекта в тепловой энергии и тепловые потери для каждого помещения. Решая такую задачу, как теплотехнический расчёт, следует учитывать комплекс характеристик объекта:
- Тип объекта (частный дом, одноэтажное либо многоэтажное здание, административное, производственное или складское).
- Количество проживающих в здании либо работающих в одну смену человек, количество точек подачи горячей воды.
- Архитектурная часть (габариты крыши, стен, полов, размеры дверных и оконных проёмов).
- Специальные данные, например, количество рабочих дней в году (для производств), продолжительность отопительного сезона (для объектов любого типа).
- Температурные режимы в каждом из помещений объекта (их определяет CHиП 2.04.05-91).
- Функциональное назначение (складское производственное, жилое, административное или бытовое).
- Конструкции крыши, наружных стен, полов (тип утепляющих прослоек и применяемых материалов, толщина перекрытий).
Зачем нужен теплотехнический расчёт?
- Чтобы определить мощность котла. Предположим, Вы приняли решение снабдить загородный дом либо предприятие системой автономного отопления. Чтобы определиться с выбором оборудования, в первую очередь потребуется рассчитать мощность отопительной установки, которая понадобится для бесперебойной работы горячего водоснабжения, кондиционирования, систем вентиляции, а также эффективного обогрева здания. Определяется мощность автономной отопительной системы, как общая сумма тепловых затрат на обогрев всех помещений, а также тепловых затрат на прочие технологические нужды. Отопительная система должна обладать определённым запасом мощности, чтобы работа при пиковых нагрузках не сократила срок её службы.
- Для выполнения согласования на газификацию объекта и получения ТУ. Получить разрешение на газификацию объекта необходимо в том случае, если используется природный газ в качестве топлива для котла. Для получения ТУ потребуется предоставить значения годового расхода топлива (природного газа), а также суммарные значения мощности тепловых источников (Гкал/час). Эти показатели определяются в результате проведения теплового расчёта. Согласование проекта на осуществление газификации объекта – это более дорогостоящий и продолжительный метод организации автономного отопления, по отношению к монтажу отопительных систем, функционирующих на отработанных маслах, установка которых не требует согласований и разрешений.
- Для выбора подходящего оборудования. Данные теплового расчёта являются определяющим фактором при выборе приборов для отопления объектов. Следует учитывать множество параметров – ориентацию по сторонам света, габариты дверных и оконных проёмов, размеры помещений и их расположение в здании.
Как происходит теплотехнический расчёт
Можно воспользоваться упрощённой формулой, чтобы определить минимально допустимую мощность тепловых систем:
Qт (кBт/час) =V * ΔT * K /860, где
Qт – это тепловая нагрузка на определённое помещение; K – коэффициент теплопотерь здания; V – объём (в м3) отапливаемого помещения (ширина комнаты на длину и высоту); ΔT – разница (обозначена С) между необходимой температурой воздуха внутри и температурой снаружи.
Такой показатель, как коэффициент потерь тепла (К), зависит от изоляции и типа конструкции помещения. Можно использовать упрощённые значения, рассчитанные для объектов разных типов:
- K = от 0,6-ти до 0,9-ти (повышенная степень теплоизоляции). Небольшое количество окон, снабжённых сдвоенными рамами, стены из кирпича с двойной теплоизоляцией, крыша из высококачественного материала, массивное основание пола;
- К = от 1-го до 1,9-ти (теплоизоляция средней степени). Двойная кирпичная кладка, крыша с обычной кровлей, небольшое количество окон;
- K = от 2-х до 2,9 (низкая теплоизоляция). Конструкция сооружения упрощённая, кирпичная кладка одинарная.
- K = 3-х – 4-х (отсутствие теплоизоляции). Сооружение из металлического или гофрированного листа либо упрощённая деревянная конструкция.
Определяя разницу между требуемой температурой внутри обогреваемого объёма и температурой снаружи (ΔT), следует исходить из степени комфорта, которую Вы желаете получить от тепловой установки, а также из климатических особенностей того региона, в котором находится объект. В качестве параметра по умолчанию принимаются значения, определённые CHиП 2.04.05-91:
- +18 – общественные здания и производственные цеха;
- +12 – комплексы высотного складирования, склады;
- + 5 – гаражи, а также склады без постоянного обслуживания.
Город | Расчётная наружная температура, °C | Город | Расчётная наружная температура, °C |
Днепропетровск | — 25 | Каунас | — 22 |
Екатеринбург | — 35 | Львов | — 19 |
Запорожье | — 22 | Москва | — 28 |
Калининград | — 18 | Минск | — 25 |
Краснодар | — 19 | Новороссийск | — 13 |
Казань | — 32 | Нижний Новгород | — 30 |
Киев | — 22 | Одесса | — 18 |
Ростов | — 22 | Санкт-Петербург | — 26 |
Самара | — 30 | Севастополь | — 11 |
Харьков | — 23 | Ялта | — 6 |
Расчёт по упрощённой формуле не позволяет учитывать различия тепловых потерь здания в зависимости от типа ограждающих конструкций, утепления и размещения помещений. Так, например, больше тепла потребуют комнаты с большими окнами, высокими потолками и угловые помещения. В то же время минимальными тепловыми потерями отличаются помещения, которые не имеют внешних ограждений. Желательно использовать следующую формулу при расчёте такого параметра, как минимальная тепловая мощность:
Qт (kВт/час)=(100 Вт/м2 * S (м2) * K1 * K2 * K3 * K4 * K5 * K6 * K7)/1000, где
S – площадь комнаты, м2; Bт/м2 – удельная величина потерь тепла (65-80 ватт/м2). В этот показатель входят утечки тепла через вентиляцию, поглощения стенами, окнами и прочие виды утечек; К1 – коэффициент утечки тепла через окна:
- при наличии тройного стеклопакета К1 = 0,85;
- если стеклопакет двойной, то К1 = 1,0;
- при стандартном остеклении К1 = 1,27;
К2 – коэффициент потерь тепла стен:
- высокая теплоизоляция (показатель К2 = 0,854);
- утеплитель толщиной 150 мм либо стены в два кирпича (показатель К2=1,0);
- низкая теплоизоляция (показатель К2=1,27);
К3 – показатель, определяющий соотношение площадей (S) окон и пола:
- 50% КЗ=1,2;
- 40% КЗ=1,1;
- 30% КЗ=1,0;
- 20% КЗ=0,9;
- 10% КЗ=0,8;
К4 – коэффициент температуры вне помещения:
- -35°C K4=1,5;
- -25°C K4=1,3;
- -20°C K4=1,1;
- -15°C K4=0,9;
- -10°C K4=0,7;
К5 – количество выходящих наружу стен:
- четыре стены К5=1,4;
- три стены К5=1,3;
- две стены К5=1,2;
- одна стена К5=1,1;
К6 – тип теплоизоляции помещения, которое располагается над отапливаемым:
- обогреваемое К6-0,8;
- теплая мансарда К6=0,9;
- не отапливаемый чердак К6=1,0;
К7 –высота потолков:
- 4,5 метра К7=1,2;
- 4,0 метра K7=1,15;
- 3,5 метра К7=1,1;
- 3,0 метра К7=1,05;
- 2,5 метра K7=1,0.
Приведём в качестве примера расчёт минимальной мощности отопительной автономной установки (по двум формулам) для отдельно стоящего сервисного помещения СТО (высота потолка 4м, площадь 250 м2, объём 1000 м3, окна большие с обычным остеклением, теплоизоляция потолка и стен отсутствует, конструкция – упрощённая).
По упрощённому расчёту:
Qт (кВт/час) = V * ΔT * K/860=1000 *30*4/860=139,53 кВт, где
V — объем воздуха в отапливаемом помещении (250 *4), м3; ΔT — разница показателей между температурой воздуха извне комнаты и требуемой температурой воздуха внутри помещения (30°С); К — коэффициент теплопотерь строения (для зданий без теплоизоляции К = 4,0); 860 — перевод в кВт/час.
Более точный расчёт:
Qт (кВт/час) = (100 Вт/м2 * S (м2) * K1 * K2 * K3 * K4 * K5 * K6 * K7)/1000 = 100*250*1,27*1,27*1,1*1,5*1,4*1*1,15/1000=107,12 кВт/час, где
S – площадь помещения, для которого выполняется расчёт (250 м2); K1 – параметр утечки тепла через окна (стандартное остекление, показатель К1 равен 1,27); К2 – значение утечки тепла через стены (плохая теплоизоляция, показатель К2 соответствует 1,27); К3 – параметр соотношения габаритов окон к площади пола (40%, показатель К3 равен 1,1); K4 – значение температуры снаружи (-35 °C, показатель K4 соответствует 1,5); K5 – количество стен, которые выходят наружу (в данном случае четыре К5 равен 1,4); К6 – показатель, определяющий тип помещения, расположенного непосредственно над отапливаемым (чердак без утепления К6=1,0); K7 – показатель, определяющий высоту потолков (4,0 м, параметр К7 соответствует 1,15).
Как можно видеть из произведённого расчёта, вторая формула предпочтительнее для расчёта мощности отопительных установок, поскольку она учитывает гораздо большее количество параметров (особенно если необходимо определить параметры маломощного оборудования, предназначенного для эксплуатации в небольших помещениях). К полученному результату надо приплюсовать небольшой запас по мощности для увеличения срока эксплуатации теплового оборудования. Выполнив несложные расчёты, Вы сможете без помощи специалистов определить необходимую мощность автономной отопительной системы для оснащения объектов жилого или промышленного назначения.
Купить тепловую пушку и другое обогреватели можно на сайте компании или посетив наш розничный магазин.
Теплотехнический расчет индивидуального жилого дома
Приведенные выше методики укрупненных расчетов больше всего ориентированы на продавцов или покупателей радиаторов систем отопления, устанавливаемых в типовых многоэтажных жилых домах. Но когда речь идет о подборе дорогостоящего котельного оборудования, о планировании системы отопления загородного дома, в котором кроме радиаторов будут установлены системы напольного отопления, горячего водоснабжения и вентиляции, пользоваться этими методиками крайне не рекомендуется.
Каждый владелец индивидуального жилого дома или коттеджа еще на стадии строительства достаточно скрупулезно подходит к разработке строительной документации, в которой учитываются все современные тенденции использования строительных материалов и конструкций дома. Они обязательно должны не быть типовыми или морально устаревшими, а изготовлены с учетом современных энергоэффективных технологий. Следовательно, и тепловая мощность системы отопления должна быть пропорционально ниже, а суммарные затраты на устройство системы обогрева дома значительно дешевле. Эти мероприятия позволяют в дальнейшем при использовании отопительного оборудования снижать затраты на потребление энергоресурсов.
Расчет теплопотерь выполняется в специализированных программах либо с использованием основных формул и коэффициентов теплопроводности конструкций, учитывается влияние инфильтрации воздуха, наличие или отсутствие систем вентиляции в здании. Расчет заглубленных цокольных помещений, а также крайних этажей производится по отличной от основных расчетов методике, которая учитывает неравномерность остывания горизонтальных конструкций, то есть потери тепла через крышу и пол. Выше приведенные методики этот показатель не учитывают.
Теплотехнический расчет выполняется, как правило, квалифицированными специалистами в составе проекта на систему отопления в результате которого производится дальнейший расчет количества и мощность приборов отопления, мощность отдельного оборудования, подбор насосов и другого сопутствующего оборудования.
В качестве наглядного примера выполним расчет теплопотерь в специализированной программе для трех домов, построенных по одной технологии, но с различной толщиной теплоизоляции наружных стен: 100 мм, 150 мм и 200 мм. Расчет ведется для угловой жилой комнаты с одним окном, площадью 8,12 м?. Регион строительства Московская область.
Исходные данные:
- Помещение с обмером по наружным габаритам 3000х3000;
- Окно размерами 1200х1000.
Целью расчета является определение удельной мощности системы отопления, необходимой для нагрева 1м?.
Результат:
- Qуд при т/изоляции 100 мм составляет 103 Вт/м?
- Qуд при т/изоляции 150 мм составляет 81 Вт/м?
- Qуд при т/изоляции 200 мм составляет 70 Вт/м?
Как видно из расчета, наибольшие потери тепла составляют для жилого дома с наименьшей толщиной изоляции, следовательно, мощность котельного оборудования и радиаторов будет выше на 47% чем при строительстве дома с теплоизоляцией в 200 мм.
Для чего необходим тепловой расчет
Некоторые владельцы частных домов или те, кто только собираются их возводить, интересуются тем, есть ли какой-то смысл в тепловом расчете системы отопления? Ведь речь идет о простом загородном коттедже, а не о многоквартирном доме или промышленном предприятии. Достаточно, казалось бы, только купить котел, поставить радиаторы и провести к ним трубы. С одной стороны, они частично правы – для частных домовладений расчет отопительной системы не является настолько критичным вопросом, как для производственных помещений или многоквартирных жилых комплексов. С другой стороны, существует три причины, из-за которых подобное мероприятие стоит провести. , вы можете прочитать в нашей статье.
- Тепловой расчет существенно упрощает бюрократические процессы, связанные с газификацией частного дома.
- Определение мощности, требуемой для отопления жилья, позволяет выбрать нагревательный котел с оптимальными характеристиками. Вы не переплатите за избыточные характеристики изделия и не будет испытывать неудобств из-за того, что котел недостаточно мощен для вашего дома.
- Тепловой расчет позволяет более точно подобрать , трубы, запорную арматуру и прочее оборудование для отопительной системы частного дома. И в итоге все эти довольно дорогостоящие изделия проработают столько времени, сколько заложено в их конструкции и характеристиках.