Как работает блок управления отоплением загородного дома?

Отопление: Искусственное нагревание помещения в холодный период года для компенсации тепловых потерь и поддержания нормируемой температуры со средней необеспеченностью 50 ч/год. Под системами внутреннего теплоснабжения здания следует понимать системы теплоснабжения отопления, водонагревателей, системы горячего водоснабжения, воздухонагревателей приточных установок, кондиционеров, воздушно-отопительных агрегатов, воздушно-тепловых завес и др. (СП 60.13330.2012).

Основной задачей системы отопления является создание комфортных условий для посетителей здания. Целями автоматизации систем отопления является:

  • Эффективное и экономичное использование источников тепла;
  • Облегчение управления системой для службы эксплуатации здания или владельца частного дома;
  • Прогнозирование технического обслуживания оборудования;
  • Распределение и балансировка нагрузки на тепловую сеть здания;
  • Предотвращение выхода из строя оборудования;
  • Уменьшение влияния «человеческого фактора»;
  • Снижение стоимости коммунальных услуг.

Совокупность систем автоматизация систем отопления вентиляции и кондиционирования формируют систему автоматического управления микроклиматом в здании.

Виды систем отопления

Системы отопления классифицируются по следующим признакам.

По виду теплообмена между обогревателем и окружающей средой:

Конвективное отопление. В этом случае передача тепловой энергии происходит вместе с перемещением объемов горячего и холодного воздуха: тёплый воздушный поток устремляется вверх, холодный – опускается вниз. Из механизма передачи тепла, конвективное отопление невозможно через любые непроницаемые преграды, в т.ч. прозрачные.

Лучистое отопление. Это вид отопления, при котором тепло передается излучением. От Солнца – к Земле или от нагретой поверхности к наблюдателю.

Конвективно-лучистое отопление. Смешанный механизм. Большинство отопительных приборов (радиаторы, конвекторы, теплые полы и стены) передают тепло именно этим способом, оптимальным считается вариант, когда имеет место примерно равное (50/50) соотношение конвективного и лучистого тепла.

По виду теплоносителя:

Водяное отопление. На сегодняшний день самый распространённый вид отопления, который бывает следующих видов:

  • Радиаторное отопление, при котором могут использоваться следующие типы радиаторов: чугунные, стальные, алюминиевые, биметаллические, каменные, керамические, а также конвекторы.
  • Тёплый водяной пол. В этом случае отопительные коммуникации проложены под покрытием пола.
  • Плинтусное отопление. В этом случае каждая секция теплого плинтуса представляет собой небольшой конвектор с кожухом, а монтаж ведётся, как монтаж обычного радиатора.

  • Водяное инфракрасное отопление («тёплый потолок»). При монтаже такой системы на потолке крепится большая инфракрасная панель, являющаяся источником тепла.

  • Комбинированные системы: включают в себя элементы вышеприведенных систем отопления.

Воздушное отопление. К воздушным относят системы, в которых теплоносителем выступает нагретый воздух. В приточной вентиляции такие системы бывают локальными и распределёнными.

В локальных системах нагревание и подача воздуха производится непосредственно в отапливаемом помещении при помощи отопительных и отопительно-вентиляционных приборов.

В распределённых системах воздух нагревается в воздухонагревательной установке и по каналам подается в помещения.

Кроме того, бывает огневоздушное отопление, при котором тепло поступает от печей и каминов. При таком виде отопления теплоноситель либо практически отсутствует, либо им являются горячие дымовые газы.

Системы отопления без теплоносителя.

  • Электрические системы отопления. В таких системах электрическая энергия, преобразовываясь в тепловую, нагревает помещение, а не теплоноситель, например, электро-камины, ИК-электрические панели, электрические радиаторы или полы.
  • Газовые системы. В таких системах тепло вырабатывается при сгорании газо-воздушной смеси. В качестве примера можно привести газовые камины. картинка галового подогрева

Протокол OpenTherm, модулирующие горелки и погодозависимая автоматика

В наше время самые современные и высокотехнологичные системы управления отоплением – оборудование, поддерживающее протокол OpenTherm. Есть три главных особенности, отличающие приборы с OpenTherm от приведённых выше примеров.

Управление модуляцией пламени

Модуляция пламени – регулирование мощности нагрева. Создание новых газовых котлов с горелками, управляющими модуляцией пламени, способствовало появлению новых возможностей в организации более эффективной и экономичной работы систем отопления. При слишком большой мощности происходит частое включение и выключение котла (тактование), а при малой – достижение заданной температуры делается невозможным. Поэтому наилучшей модуляцией пламени считается уровень горения, при котором котёл не выключается, но при этом достигнуто заданное значение температуры. Ни один из описанных выше способов управления котлом не может управлять модуляцией пламени. Для работы с новыми горелками был придуман протокол OpenTherm, позволяющий эффективно наладить связь между возможностями новых горелок и современной погодозависимой автоматикой и электроникой.

Работа с автоматикой

Можно сказать, что OpenTherm – это мост, проложенный между производителями котлов и производителями прочей автоматики и электроники. Единый протокол стандартно описывает все основные команды по работе с модулирующими горелками. Это позволяет подключить к нему самое разнообразное оборудование: от термостата до программируемых термоконтроллеров, к которым может быть присоединено до 10 термодатчиков. Современные термоконтроллеры – это программируемые приборы, обрабатывающие показания термодатчиков, расположенных как в различных зонах отапливаемого объекта, так и на улице. Теплоконтроллер поддерживает заданную температуру и может её изменять в зависимости от команд пользователя, времени суток или дня недели. Анализируя полученные данные температуры снаружи и внутри помещения, контроллер задает погодозависящий режим работы для модулирующей горелки котла и насосов. На графике мы можем видеть, что горелка практически не выключается, а только меняет интенсивность своего горения. При этом вне зависимости от внешних условий, график целевой температуры практически не меняется и лежит в границах гистерезиса теплосистемы. Также преимущества этой системы управления – это заметное повышение срока службы горелки и значительная экономия газового топлива.

Доступ к настройкам автоматики и фиксирование ошибок

Помимо прочего, протокол OpenTherm предоставляет возможность получить полный доступ к настройкам автоматики котла и произвести их изменение с любого управляющего устройства (смартфона, планшета или стационарного компьютера). Также протокол предоставляет владельцу отопительного оборудования, а также обслуживающему персоналу всю информацию об ошибках, произошедших при работе теплового оборудования.
Преимущества:

  • Минимальный расход топлива по сравнению с другими методами управления;
  • Минимальное колебание температуры воздуха в доме вне зависимости от температуры на улице, что обеспечивает максимальный комфорт;
  • Корректировка температуры идёт за счёт изменения модуляции пламени горелки, что минимизирует количество циклов включения/выключения;
  • Возможность удаленного мониторинга состояния котла и изменения его настроек.

Недостатки:

  • Более высокая цена по сравнению с другим оборудованием, что компенсируется за счёт экономии газа.

Элементы систем отопления

Какие элементы могут быть использованы (и автоматизированы).

Котлы. Основной элемент любой системы, так как именно здесь происходит процесс сгорания топлива, после чего тепло, выделяющееся при этом, передается теплоносителю (воде или антифризу).

По типу энергоносителя котлы бывают:

  • газовые;
  • электрические;
  • жидкотопливные;
  • твёрдотопливные;
  • комбинированные;
  • альтернативные, например, солнечные коллекторы.

По количеству контуров циркуляции теплоносителя котлы бывают:

  • Одноконтурные – предназначены только для отопления;
  • Многоконтурные – используются так же для подогрева воды или включения системы теплых полов.

Горелки. Устанавливаются на газовых котлах и бывают вентиляторными (с нагнетателем) и атмосферными. Вентиляторные горелки более шумные, но могут работать при любом давлении поступающего газа.

Температурный график отопления. В многоквартирных домах, общественных и промышленных зданиях, котлы и горелки заменяет ТЭЦ или ТЭС. Со станции, по системам теплотрасс, нагретый пар поступает в ЦТП района, а от него, в свою очередь в ИТП здания. От нагретого, в соответствии с температурным графиком, теплоносителя, через теплообменники ИТП, в контуры отопления, вентиляции и ГВС передается тепло. На выходе их теплообменников, температура теплоносителя, возвращающегося в сеть, должна соответствовать температурному графику.

Пример температурного графика. Нажмите, чтобы раскрыть

Температура наружного воздуха Тнв, оСТемпература сетевой воды в подающем трубопроводе Т1,оСТемпература воды в подающем трубопроводе системы отопления Т3,оСТемпература воды после системы отопления Т2, оС
15013011510595
853,250,246,443,441,235,8
755,752,348,245,042,736,8
658,154,450,046,644,137,7
560,556,551,848,245,538,7
462,958,553,549,846,939,6
365,360,555,351,448,340,6
267,762,657,052,949,741,5
170,064,558,854,551,042,4
072,466,560,556,052,443,3
-174,768,562,257,553,744,2
-277,070,463,859,055,045,0
-379,372,465,560,556,345,9
-481,674,367,262,057,646,7
-583,976,268,863,558,947,6
-686,278,170,465,060,248,4
-788,580,072,166,461,549,2
-890,881,973,767,962,850,1
-993,083,875,369,364,050,9
-1095,385,676,970,865,351,7
-1197,687,578,572,266,652,5
-1299,889,380,173,667,853,3
-13102,091,281,775,069,054,0
-14104,393,083,376,470,354,8
-15106,594,884,877,971,555,6
-16108,796,686,479,372,756,3
-17110,998,487,980,773,957,1
-18113,1100,289,582,075,157,9
-19115,3102,091,083,476,358,6
-20117,5103,892,684,877,559,4
-21119,7105,694,186,278,760,1
-22121,9107,495,687,679,960,8
-23124,1109,297,188,981,161,6
-24126,3110,998,690,382,362,3
-25128,5112,7100,291,683,563,0
-26130,6114,4101,793,084,663,7
-27132,8116,2103,294,385,864,4
-28135,0117,9104,795,787,065,1
-29137,1119,7106,197,088,165,8
-30139,3121,4107,698,489,366,5
-31141,4123,1109,199,790,467,2
-32143,6124,9110,6101,094,667,9
-33145,7126,6112,1102,492,768,6
-34147,9128,3113,5103,793,969,3
-35150,0130,0115,0105,095,070,0

Подробнее об автоматизации ИТП.

Воздушные клапаны. Служат для выведения из системы воздуха. Такие клапаны есть в радиаторах отопления и в стояках. Многие знакомы с ручным клапаном маевского.

Расширительные бачки. При повышении температуры внутреннее гидравлическое давление в замкнутой системе, заполненной водой, увеличивается, и чтобы не произошло аварии, излишки воды поступают в расширительный бачок. Если в системе отсутствует котел, то не потребуется и расширительный бачок.

Циркуляционные насосы. Используются для движения теплоносителя в системе с принудительной циркуляцией.

Система трубопроводов. Используются для перемещения по ним теплоносителя, бывают стальные, медные и полимерные.

Радиаторы, теплые полы. Конечные нагревательные приборы. Используются для обогрева помещения, бывают стальные, чугунные, алюминиевые и биметаллические.

Датчики температуры и давления, измерители расхода, регуляторы частоты вращения и терморегуляторы. Все эти средства применяются для контроля параметров системы, исключения аварий, управления системой, ручного или автоматического.

Снижение затрат на оплату тепловой энергии

Автоматизация ИТП является одним из наиболее эффективных инструментов для снижения затрат на оплату тепловой энергии.

4.1.Автоматика ИТП обеспечивает регулирование температуры воды, поступающей в систему отопления, в зависимости от температуры наружного воздуха. Это позволяет уменьшить «перетоп» здания в осенне-весенний период и снизить тем самым «бесполезные» затраты тепловой энергии. 4.2. Дополнительным резервом экономии тепловой энергии является корректировка температуры подаваемого в систему отопления теплоносителя по температуре обратной воды с учетом реального режима работы теплоснабжающей организации. 4.3. Поддержание температуры воды в обратном трубопроводе в соответствии с температурой теплоносителя в подающем трубопроводе тепловой сети (см. п.3.3) позволяет избежать претензий и штрафных санкций теплоснабжающей организации. Например, ТЭЦ-5 в случае систематического превышения среднесуточной температуры «обратки» на величину более 3°С начисляет дополнительную оплату за «недоиспользованную тепловую энергию». Эта величина определяется по формуле:

∆Wнедоис.= М2∙(Т2Ф-Т2ГР)/1000

∆Wнедоис.– Величина «недоиспользованной тепловой энергии» за расчетный ежемесячный период, Гкал.

М2 – количество теплоносителя на систему отопления; вентиляции за расчетный ежемесчяный период, Т;

Т2Ф – фактическая температура обратной воды, °С;

Т2ГР– температура обратной воды, соответствующая температуре в подающем трубопроводе сетевой воды, °С;

1000 –коэффициент для перевода в Гкал.

Практика показывает, что величина ∆Wнедоис. достигает 50% от суммарного теплопотребления за 1 месяц.

4.4. Современные контролеры позволяют использовать уставку (поправку) к задаваемой температуре воды, поступающей в систему отопления. Эта установка позволяет автоматически понижать температуры в производственных помещениях в ночное время суток и в выходные дни, затем превышать ее в рабочее время. В жилых домах используют автоматическое снижение температуры в ночное время. Таким образом, автоматизация теплопотребления обеспечивает существенную экономию тепловой энергии, которая достигает 50%.

Что и как автоматизировать? Основные принципы

В зависимости от типа системы нагревания теплоносителя, управление будут отличаться и управляемые системой автоматики параметры.

В общем случае, оператор задает желаемую температуру в помещении, через пульт управления или через ПК, через пульт в отдельном помещении и т.п.

Система автоматизации отопления система на основе данных о температуре воздуха в здании, температуры наружного воздуха, времени суток, наличия в помещении людей выбирает режим работы и передает управляющие сигналы на исполнительные устройства, которые могут отличаться:

А) Для управления электрической системой отопления применяются приборы, управляющие мощностью электрического тока: биметаллические термостаты, работающие по принципу «вкл/выкл», или тиристорные регуляторы напряжения, с помощью которых при уменьшении напряжения уменьшается и потребляемую мощность прибора. В качестве примера, можно вспомнить электрический конвектор, пользователь задает необходимую температуру, а терморегулятор поддерживает температуру включая и отключая подачу электроэнергии к прибору.

Б) Для управления системой отопления с контуром теплоносителя применяются приборы, регулирующие температуру и расход теплоносителя. При этом регулировка температуры теплоносителя возможна только в автономных системах с котлами и нагревателями, например, в частных домах, для систем централизованного отопления температура входящего и исходящего потоков теплоносителя заданы графиками:

  • от крупных ТЭЦ: 150/70°С, 130/70°С или 105/70°С;
  • от котельных и небольших ТЭЦ: 105/70°С или 95/70°С.

Таким образом, на больших объектах регулирование температуры в помещении может осуществляться только с помощью приборов, изменяющих расход теплоносителя в сети отопления и поддерживающих его на заданном уровне, чтобы не выходить за рамки температурного графика.

Принцип погодозависимого регулирования отопления

Поясним, каким образом осуществляется поддержание комнатной температуры с учетом изменений уличной. При настройке контроллера устанавливается так называемая температурная кривая, отражающая зависимость температуры теплоносителя в отопительном контуре от изменения погодных условий снаружи. Эта кривая представляет собой линию, одна точка которой соответствует +20°С на улице (при этом температура теплоносителя в отопительном контуре тоже равна +20°С, поскольку считается, что при таких условиях в отоплении нет необходимости). Вторая точка — это температура теплоносителя (скажем, 70°С), при которой даже в самые холодные сутки отопительного сезона температура в комнате будет оставаться заданной (например, 23°С). В случае, если здание утеплено недостаточно, для компенсации теплопотерь потребуется несколько большая температура теплоносителя в отопительном контуре. Соответственно, наклон кривой будет крутым. И наоборот, если с теплоизоляцией дома все в порядке. При изготовлении контроллера в память прибора вносят множество подобных кривых, чтобы можно было потом выбрать из всего семейства подходящую линию конкретно для условий вашего жилища.

Как правило, для создания максимального уровня теплового комфорта, а также для экономии топлива одного-единственного уличного датчика бывает недостаточно. Поэтому часто монтируют дополнительный датчик внутри обогреваемого помещения. Наличие сразу двух датчиков, и комнатного и уличного, позволяет точно отслеживать и оперативно корректировать температуру в помещениях дома.

Обычно датчик комнатной температуры устанавливается в так называемом эталонном помещении — температура в нем будет соответствовать вашему понятию о комфортном тепловом фоне. Это помещение не должно нагреваться прямыми солнечными лучами и продуваться сквозняками. Как правило, в качестве эталона выбираются детские и спальни. Установка комнатного датчика делает возможным включение режима самоадаптации, при котором отопительная кривая подбирается под соответствующее помещение автоматически — самим микрокомпьютером панели управления. Кроме того, часто комнатный датчик интегрируют в термостат, с помощью которого можно задавать нужную температуру и ее средний уровень во всем доме. Локальная регулировка температуры в отдельно взятом помещении при этом достигается установкой на радиаторы термостатических клапанов с термоголовками.

Очень важным аспектом применения термостата является опять же экономия топлива. Поясним, каким образом она осуществляется. Допустим, в помещении, где установлен датчик, собрались гости и произошло повышение температуры на 2°С вследствие естественного тепловыделения людей. Панель управления улавливает эти изменения и дает команду на снижение температуры теплоносителя в данном контуре, хотя уличный датчик может требовать как раз обратного. Уменьшение расхода тепла на обогрев этого помещения естественным образом экономит топливо. Но существуют здесь и проблемы. Если затопить в комнате, где установлен термостат, камин или надолго оставить открытым окно, это может привести к изменению температуры во всем доме. Для учета подобных факторов во многих системах предусматривают возможность внесения поправок в алгоритм управления путем установки коэффициента влияния комнатного датчика на характер отопительной кривой. Но вообще специалисты просто не рекомендуют устанавливать устройства измерения комнатной температуры вблизи каминов, входных дверей, окон и других источников тепла или холода, способных внести погрешность в результаты измерений.

Следует обратить внимание и на то, что установка одного только комнатного термостата, без датчика наружной температуры, существенно увеличивает инерционность системы терморегулирования. Изменения в тепловом фоне будут происходить с запозданием, поскольку автоматика начнет действовать лишь тогда, когда температура в доме, например, понизится, а это произойдет уже позже реального похолодания на улице

Современные контроллеры не только следят за погодой, но и обладают достаточно большим количеством функций, часть из которых — пользовательские, а часть — сервисные. Если первые стоят на страже комфорта, то вторые следят за состоянием системы и обеспечивают правильную и безопасную работу оборудования.

Основные узлы системы автоматизации отопления

  • датчики температуры (для помещения, уличные, теплоносителя) и давления, с помощью которых обеспечивается постоянное поступление информации о состоянии отопительной системы;
  • терморегуляторы (задатчики, термостаты), осуществляющие регулировку подачи теплоносителя;
  • приводы исполнительные устройства (клапанов, насосов циркуляционных и подпитки, частотные регуляторы) выполняют функцию регулирующих и предохранительных механизмов, обеспечивающих надёжную и безаварийную работу системы.
  • щиты автоматизации (контроллеры, модули расширения), осуществляющие управление отопительной системой

Датчики

Датчики предназначены для контроля давления и температуры в помещении, на улице и теплоносителя в трубопроводах системы отопления.

Датчики температуры бывают:

Погружными. Предназначены для снятия показаний о нагреве воды в трубах. Их монтаж выполняется на определенных участках системы. Данные датчики бывают биметаллическими и спиртовыми

Дистанционными. Данный тип датчиков устанавливается вне системы отопления. В последнее время популярностью пользуются беспроводные модели, которые передают информацию с помощью вспомогательной электроники, что даёт возможность установить их практически в любом месте – отдельном помещении или на улице.

Датчики давления бывают механическими — реле давления (механическое измерение перепада давлений и электрическое преобразование) и аналоговыми датчики давления (преобразование давления сразу в электрический сигнал, например, с помощью пьезо-элементов).

Программаторы и терморегуляторы – основные элементы управления отоплением

Программатор отопления

Для организации автономного теплоснабжения понадобятся электронные устройства. Они могут иметь пульт управления котлом отопления, возможность одновременного изменения паромеров в нескольких подключаемых компонентах.

Эти устройства называются программаторами или электронными терморегуляторами. Как и другие аналогичные приборы, они могут иметь управление отоплением по СМС или интернет. Но это лишь дополнительные функции. Для выбора оптимальной модели необходимо знать основные функциональные качества программатора:

  • Число подключаемых контуров. Может варьировать от 1-го до 12. Дополнительно устанавливается модуль для увеличения количества разъемов;
  • Режимы работы системы. В зависимости от настроек можно устанавливать управление радиаторами отопления в экономичном режиме, нормальном и комфортном;
  • Подключаемый модуль – управление отоплением по телефону. GSM станция передает требуемую информацию через СМС – температуру теплоносителя, оповещение об аварийном режиме и т.д.;
  • Наличие радиопередатчиков для создания беспроводных каналов связи между подключаемыми компонентами отопления.

В совокупности установленное оборудование называется рамка управления отоплением. Она может состоять из компонентов с различным функционалом. Одинаковым остается назначение – возможность автоматического или полуавтоматического изменения параметров теплоснабжения.

Подключение программатора к котлу

Но помимо локальных устройств есть и зональные, устанавливаемые на конкретные компоненты – котлы, радиаторы. Осуществляя управление отоплением через интернет с помощью этих приборов, можно регулировать степень нагрева воды в системе, температурный режим в конкретной батарее. Зачастую такие устройства называют не программаторами, а электронными терморегуляторами.

Они отличаются более доступной стоимостью и простотой монтажа. Для терморегуляторов не нужен шкаф управления отоплением, что снижает трудоемкость обустройства. В некоторых случаях возможно подключение нескольких терморегуляторов к единому блоку управления.

Что нужно учитывать при составлении бюджета «умного» отопления? Помимо стоимости управляющего элемента нужно знать ориентировочную цену на расходные материалы – коммуникационные провода, щит управления отоплением. Последний необходим при установке системы из нескольких блоков – программатора, GSM модуля, расширительных планок для дополнительных контакторов.

МодельНазначениеСтоимость, руб.
Computherm Q3Проводной терморегулятор1625
Computherm Q3 RFБеспроводной терморегулятор3367
PROTHERM Kromschroder E8.4401Программатор. Управление 4-мя котлами, ГВС, 15 контурами отопления34533
Щит управления отоплениемУЗО, блоки контроля котла, подключение к датчикам температурыОт 7000

Также важно учитывать месторасположение – ящик управления отоплением должен быть установлен в доступном месте. Не рекомендуется его монтаж в котельной, хотя по трудоемкости это самый простой вариант. Лучше всего выполнить монтаж в жилой комнате. Тогда будет возможность намного чаще контролировать и изменять параметры системы.

Модели программаторов отличаются количеством подключаемых компонентов системы. Они называются управляющими контурами.

Терморегуляторы

Терморегуляторы являются элементом управления системы и бывают механическими и электронными.

Механические терморегуляторы состоят из термической головки (чувствительного элемента) и клапана. Рабочее тело чувствительно элемента – жидкость, газ или упругий элемент, изменяющий свою форму в зависимости от температуры. При изменении температуры воздуха в обогреваемом помещении происходит изменение объема рабочего тела. Чувствительный элемент реагирует на это и перемещает шток клапана регулятора. Таким образом изменяется проходное сечение в канале.

Электронные терморегуляторы (ЭТ) . Это автоматический прибор, состоящий из нескольких устройств, которые обеспечивают поддержание заданной температуры в тепловых установках. В системе отопления они автоматически управляют режимами работы оборудования и исполнительных механизмов (котлы, смесители, насосы, клапаны и др.), при результатом их работы будет создание в помещении температурного режима, заданного пользователем.

Цифровые терморегуляторы бывают с «открытой» и с «закрытой логикой». Закрытая логика подразумевает под собой жесткие алгоритмы управления и определенный набор внешний устройств, подключаемых к системе (датчиков, приводов). Изменять можно только ограниченные параметры, программировать алгоритмы управления пользователь не может.

В больших системах применяют терморегуляторы с открытой логикой – это свободно программируемые контроллеры, имеющие большой диапазон настроек и функций. Их можно включить в централизованную систему управления зданием. Монтируются в щиты автоматизации. Установки и настройка таких терморегуляторов требует определенной квалификации.

Наше оборудование

Автоматизированный комплекс состоит из модулей, каждый из которых выполняет определенные функции:

  • Управляющий контроллер — это основной модуль с микропроцессором программируемого типа. На нем специалист задает те данные, которые будет использовать система автоматизации в своей работе. Например, можно настроить параметры температуры в зависимости от времени суток для оптимизации расходов. Так, в конце рабочего дня мощность оборудования будет снижаться, а перед его началом система перейдет в режим высокой производительности. Все корректировки модуль выполняет автоматически, без участия человека. Можно настроить постоянный сбор данных с последующей корректировкой значений температуры. Контроллеры координируют работу всех элементов комплекса на основании информации, которую передают датчики.
  • Датчики. Это термические устройства, определяющие температуру теплоносителя и окружающей среды. Эти данные преобразуются в команды и отправляются на котроллер. Задача датчиков — зафиксировать реальные параметры на объекте. Эти сведения могут касаться температуры, влажности, давления. Мы индивидуально подбираем датчики под условия эксплуатации.
  • Панель управления. На ней размещены переключатели, которые вы можете использовать для ручного управления контроллерами. На панели есть информативный дисплей, он упрощает управление. Вы сможете в реальном времени отслеживать параметры системы, проверять соответствие фактических показателей нормативным, предпринимать своевременные корректировки.
  • Температурные регуляторы. Это электронные и механические устройства, предназначенные для корректировки сечения труб в зависимости от потребностей объекта и внешних условий. Меняя пропускную способность каналов, можно менять в большую либо меньшую сторону объем теплоносителя, поступающего к радиаторам.

Приводы исполнительных устройства

Приводы клапанов бывают пороговые (двух-трех позиционными) и аналоговые, с возможностью плавного регулирования.

Самым известным и распространенным способом регулирования в насосной системе является регулирование заслонкой, когда двигатель работает на полных оборотах, а регулирование давления в системе осуществляется с помощью запорной арматуры (задвижек, вентилей, отводов, шаровых кранов и т.д.). Работа насоса обеспечивается постоянной подачей энергии на него от электродвигателя, а управление им – устройством регулирования давления.

Регулирование заслонкой можно сравнить с управлением автомобилем: при выжатой до упора педали газа скорость движения регулируется педалью тормоза.

Более экономичный способ управления расходом теплоносителя — применение частотных преобразователей для регулирования частоты вращения двигателей насосов системы отопления.

При этом способе регулирования достигается до 50% экономии потребления энергии, а если учесть, что в течение срока службы двигатель расходует электроэнергии на сумму, намного превосходящую его стоимость, то это показатель оказывается чрезвычайно актуальным. Например, работающий в течение года по 8 часов в день двигатель мощностью 11 кВт израсходует электроэнергии на сумму около 145 тыс. руб. (при тарифе 4.5 руб./кВтч).

Ручное управление отопительным котлом

До определенного момента самым распространённым способом управления отопительным котлом было ручное регулирование температуры теплоносителя (многие котлы до сих пор управляются именно так). Автоматизация была простая – встроенный в котёл термостат вручную настраивался на определенную температуру циркулирующего в системе теплоносителя, например, 50°С. Но ручное управление эффективно только при стабильных внешних условиях. Допустим, что необходимо поддерживать определенную температуру в помещении – 23°С. При достижении температуры теплоносителем в 50°С термостат подаст команду на выключение газовой горелки, а если температура понизится – то на включение. Этот циклический процесс объясняет «волнистость» оранжевого графика температуры теплоносителя и зеленого графика комнатной температуры. Если на улице резко похолодает, а термостат продолжит работать в прежнем режиме (50°С), то температура в помещении неизбежно понизится. Для исправления этой ситуации требуется участие человека, который должен повысить значения температуры теплоносителя до более высоких значений.
Минусы этого способа регулирования налицо – это вовлечённость человека в работу системы отопления и непрерывная работа автоматики розжига горелки.

Преимущества:

  • Высокая точность поддержания стабильной температуры в доме при неизменной температуре на улице;
  • Не нужно доплачивать за автоматику управления, т.к. она входит в стоимость котла.

Недостатки:

  • Необходимость постоянной ручной регулировки температурного режима работы котла;
  • Из-за постоянно работающего насоса происходит повышенный расход электроэнергии;
  • Частые циклы включения/выключения быстрее изнашивают автоматику котла.

Щиты автоматизации

Щиты автоматизации отопления служат для управления отопительной системой. С их помощью управляют циркуляционными насосами, регулирующими клапанами с импульсным либо аналоговым управлением, задвижками и соленоидными клапанами подпитки.

Щит автоматики могут комплектоваться датчиками температуры, давления и перепада давлений, либо производитель указывает перечень совместимого оборудования.

Реализуемые в щитах автоматизации функции:

  • Регулирование температуры подающего и обратного теплоносителя для систем отопления;
  • Поддержание заданного значения выбранного параметра, регулирование параметра по сетевому графику;
  • Включение режимов энергосбережения, в ночное время, в праздничные и выходные дни, управление циркуляционными насосами, понижение температуры горячей воды в циркуляционном контуре;
  • Защита от прикипания клапана (периодический прогон);
  • Управление работой основного и резервного насосов с организацией их попеременной работы, АВР и защитой от «сухого хода»;
  • Автоматический перезапуск насосов в случае сбоя по электропитанию;
  • Другие функции.

При подключении датчиков к щиту автоматизации отопления учитывают тип сигнала, передаваемого преобразователем — аналоговый, дискретный или пороговый – открыт/закрыт. Модули расширения, управляющие приводами устройств, выбирают исходя из тех же принципов, учитываю тип управляющего сигнала и протокол управления.

Управление котлом при помощи комнатного термостата

Другой популярный и более современный способ регулировать работу отопительного котла и исключить участие человека из этого процесса – применение в отопительной системе релейного комнатного термостата.
Термостат – это прибор, который измеряет температуру в жилом помещении и, в зависимости от окружающей среды и заданного значения температуры, управляет включением и выключением газовой горелки котла. Однако инерционность тепловой системы вызывает большие задержки в реагировании на команды комнатного термостата. И часто температура в жилом помещении существенно отличается от заданной (в сторону повышения или понижения), что и отображается на зеленом графике комнатной температуры в виде появления красных (перегрев) и синих (недогрев) сегментов.

Следует заметить, что для более быстрого нагрева на котле выставляют более высокую температуру теплоносителя (в нашем случае 80°С). Отсюда и некая «серповидность» формы оранжевого графика – мы видим быстрый нагрев до 80°С, а затем отключение горелки и постепенное остывание до момента, когда комнатный термостат снова подаст команду на включение горелки. Если уличная температура будет понижаться, то термостат будет чаще включать горелку, и нижняя граница температуры теплоносителя (красная точка «ВКЛ.» на оранжевом графике) будет расти, что компенсирует понижение внешней температуры. Таким образом, с помощью термостата стало возможным стабилизировать комнатную температуру без участия человека, хотя и возможны кратковременные циклические «перегревы» и «недогревы».

При использовании релейного термостата автоматика розжига работает значительно реже, чем при ручном управлении, но из-за высокого порогового значения температуры теплоносителя происходит перерасход газового топлива. Этот недостаток можно компенсировать усовершенствованием комнатных термостатов. Так, современные программируемые модели этих приборов позволяют задавать различные суточные и недельные режимы работы. Например, температуру в комнатах ночью можно понизить, а днём – повысить. Аналогично в будни и выходные дни. Гибкий график необходимой температуры позволяет добиться значительной экономии газа.
Преимущества:

  • Исключение участия человека из процесса регулировки работы котла;
  • Уменьшение количества циклов включения/выключения котла, что благотворно влияет на срок службы автоматики розжига;
  • Экономия электричества за счёт автоматического отключения насоса при выключенной горелке.

Недостатки:

  • Затраты на покупку и монтирование термостата;
  • В помещении вероятны заметные колебания температуры воздуха.

Проектирование системы автоматизации отопления

Оборудование и алгоритмы проекта автоматизации систем отопления выполняется по технологии разработчиков системы отопления. Типовой состав проекта может быть следующим:

  • Общие данные;
  • Структурные схемы, при необходимости;
  • Задание на программирование системы;
  • Функциональные схемы автоматизации для каждой из подсистем – по ним будут собираться щиты автоматизации;

  • Схемы связи контроллеров системы автоматизации;
  • Схемы соединений со смежными системами автоматизации;
  • Схемы внешних соединений для щитов автоматизации (фактически это таблица соединений);
  • Принципиальные электрические схемы щитов автоматизации, двигателей насосов, управления клапанами;
  • Принципиальные схемы питания щитов автоматизации;
  • План расположения оборудования и проводок систем автоматизации;
  • Кабельные журналы;
  • Монтажные схемы;
  • Спецификация оборудования и проводок.

Режимы работы системы. Работа в системе автоматизации и диспетчеризации здания

Системы управления отоплением могут работать в следующих режимах.

Ручной режим. В этом случае выставление режимов работы, переключение оборудования с основного на резервное и множество других функций осуществляется оператором вручную, при этом не важно, нажимает он кнопки на щите автоматизации или на ПК, это ручной режим.

Автоматический автономный режим. В этом случае включение и выключение системы осуществляет оператор, в дальнейшем система работает по заданному алгоритму и передает информацию о своём состоянии оператору или диспетчеру.

Автоматический в составе автоматизированной системы управления зданием. При таком режиме работа системы отопления синхронизирована с другими системами жизнеобеспечения здания, оператор или диспетчер не принимает участия в управлении.

Модули для дистанционного контроля теплоснабжения


Модули управления отоплением
Для организации системы управления отоплением дома необходимо позаботиться о возможности удаленного контроля. Обеспечить эту функцию помогут специальные модули. Чаще всего они не входят в стандартную комплектацию программаторов и терморегуляторов.

После приобретения блока управления отоплением дома следует правильно выбрать коммуникационное устройство. В зависимости от технических требований оно может обеспечивать следующие виды связи пользователя и управляющего элемента:

  • GSM контроль. Данные передаются с помощью сотовой связи. Фактически это стационарный телефон с функциями формирования, отправки, получения и обработки СМС сообщений;
  • Подключение через интернет. Характеризуется более расширенным функционалом и практически не ограничивается территориально. В этом случае пультом управления котлом отопления может быть планшет, ноутбук или любой ПК с установленным специальным программным комплексом.

Для этого программатор должен иметь гибкую настройку. Такой возможностью обладают системы Arduino, осуществляемые управление отоплением. Фактически они могут быть адаптированы для любой схемы, начиная от контроля работы вентиляции и заканчивая сложными производственными комплексами.

При выезде за границу не рекомендуется активировать роуминг для контроля отопления через GSM модуль. Это повлечет большие затраты. Лучше всего перепоручить контроль за теплоснабжением знакомому или родственнику.

GSM блок управления котлом


GSM блок передачи данных
Самый простой и относительно доступный способ контролировать работу котла – установка управления отоплением по СМС. Для этого приобретается отдельный блок, который подключается к программатору или терморегулятору. Некоторые модели уже имеют подобную функцию.

На этапе выбора дистанционного управления отоплением следует определиться со способом передачи данных через сеть GSM. Это во многом зависит от возможностей конкретной модели телефона, а также встроенных функций блока передачи данных.

Проще всего можно получать сообщения в виде СМС. Установленный в рамку управления отоплением блок будет передавать следующие данные:

  • Падение температуры и давления ниже (выше) критического уровня;
  • Аварийный отказ в работе котла – отключение электропитания, отсутствие энергоносителя. При этом возможна передача кода ошибки и ее описания.


Блок со встроенным модулем СМС оповещений
Для обратного управления отоплением по телефону необходимо отправлять СМС определенного формата. С их помощью можно настраивать уровень температуры, инициировать запуск котла после аварийного отключения. Также во многих моделях встроена функция отсрочки команды. Т.е. передается значение какого-либо параметра, и указывается время активации котла для его достижения.

При этом важно помнить, что полученные данные могут расходиться с фактическими. Для эффективного управления радиаторами отопления необходимо знать степени погрешности следующих устройств:

  • Температурных датчиков. Показания большинства электронных моделей имеют погрешность ±0,5°С;
  • Шаг изменения температуры в терморегуляторе. Он может составлять от 0,2°С до 0,5°С.

На практике это действительно необходимо при установке отопления в режим анти замерзания, когда уровень нагрева теплоносителя поддерживается на уровне +5°С. Это позволяет сэкономить на затратах энергоносителя и при этом избежать аварийных ситуаций.

Для установки блока GSM не нужно приобретать специальный шкаф управления теплоснабжением. Управление этим устройством выполняется редко – поэтому можно ограничиться монтажом закрытого щита.

Контроль отопления через интернет


Получение данных об отоплении на смартфон
Управление отоплением через интернет имеет все плюсы, свойственные контролю теплоснабжения с помощью СМС сообщений. Однако возможность получать большее количество информации сказывается на качестве теплоснабжения.

Функции блока управления отоплением коттеджа при подключении к сети интернет имеют ряд преимуществ. Главным из них является возможность установки специальных программных комплексов. Они интегрируются в ноутбук, смартфон или любой другой вид персонального ПК. При этом дистанционное управление теплоснабжением отличается следующими возможностями:

  • Удобный интерфейс. Чаще всего он рассчитан под операционные системы смартфонов. Но при небольшой доработке может быть установлен и в компьютер;
  • Нет ограничения по количеству подключаемых пользователей, как в СМС блоках;
  • Возможность настройки параметров и любой точки, где есть интернет. В этом случае нет необходимости включать роуминг. Исключением составляют услуги интернет от мобильных операторов.

Важно правильно осуществить предварительную настройку пульта дистанционного управления котлом отопления. Для этого рекомендуется сначала сверить фактические показания системы после их изменения. Это необходимо для калибровки системы.

Некоторые модели интернет блоков, установленные в рамку управления отоплением, имеют ограничения по операционным системам. Чаще всего используется ОС Android или IOS.

Автоматизация отопления частного дома

Установки систем отопления для частных домов комплектуются системами автоматизации, как правило они закрытого типа и идут с набором всех необходимых датчиков и регуляторов.

Основными задачами, которые решает автоматизация отопления частного дома, являются:

  • контроль работы нагревательного котла;
  • обеспечение комфортных условий для проживания;
  • экономия топлива и эксплуатация оборудования в оптимальном режиме.

Настройка системы автоматизации домашних систем отопления часто достаточно простая и производится либо владельцем здания, либо организацией, которая производила монтаж самой системы.

Подготовительные работы

Перед началом работ по монтажу отопления частного дома необходимо провести подготовительные работы. Их цель – в процессе производства работ свести возможность простоя монтажной бригады к минимуму. К подготовительным работам относится:

  • Обеспечение строительной готовности – тепловой контур должен быть закрыт, помещения очищены от строительного мусора, должны быть межэтажные перекрытия или лаги
  • Устройство ниш под установку радиаторов и коллекторных шкафов – если это необходимо
  • Подготовка поверхности стен для установки радиаторов – желательно чистовая отделка
  • Выполнение полной чистовой отделки помещения котельной
  • Изготовление всех необходимых отверстий в межэтажных перекрытиях, выполнение штроб и ниш

Читайте другие статьи по данной тематике

Как сэкономить на отоплении загородного домаВодяное отопление в частном доме
Система отопления дачиОтопление частного дома из металлопластиковых труб
Отопление частного дома тепловым насосом — плюсы и минусыСхема отопления двухэтажного дома
Отопление частного дома конвекторамиОтопление и водоснабжение загородного дома: описание технологии монтажа
Схемы разводки отопления от котла в частном домеАвтономное отопление частного дома
Система отопления частного дома теплым плинтусомОтопление дома сжиженным газом
Расход газа для отопления частного дома – расчет потребленияРазводка отопления двухэтажного дома
Коллекторная система отопления частного домаОтопление частного дома электричеством
Основные правила расположения радиаторов при отоплении частного домаМонтаж системы отопления в частном доме
Отопление дома – самый экономичный способКак обеспечить отопление своего дома без газа
Особенности отопления загородного дома электричествомО схемах отопления частного дома с газовым котлом
Инфракрасное отопление домовПроект отопления частного дома
Отопление частного дома с принудительной циркуляциейЛучшее отопление для частного дома
Отопление частного дома теплым поломВарианты отопления каркасного дома
Отопление частного дома из полипропилена своими рукамиМонтаж системы отопления: правила и описание
Комбинированная система отопления частного домаСистема отопления частного дома с естественной циркуляцией

Услуги по данной тематике

Проектирование отопленияТвердотопливное отопление под ключ
Газовое отопление под ключОтопление под ключ
Отопление в деревянном доме под ключВодяной теплый пол под ключ
Монтаж водяного теплого полаОтопление двухэтажного дома
Монтаж отопления в коттеджеОтопление загородного дома: варианты и цены
Монтаж отопленияМонтаж отопления в частном доме
Монтаж инженерных систем водопровода и отопленияДизельное отопление загородного дома
Автономное отопление под ключВоздушное отопление загородного дома
Цены на монтаж отопления в частном домеПроектирование и монтаж систем отопления
Водяное отопление в частном домеЭлектрическое отопление загородного дома: варианты и цены
Отопление в таунхаусеПроектирование газового отопления
Стоимость проектирования отопленияКалькулятор отопления частного дома
Монтаж водяного теплого пола в частном домеЦена на монтаж водяного теплого пола
Монтаж водяного теплого пола на деревянный пол
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]